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Frobenius antecedents and Frobenius descendants

In this unit, we introduce Dwork’s technique of descent along Frobenius (or more exactly,
descent along the p-th power map on an affine or projective line) to analyze the generic radius
of convergence and subsidiary radii of a differential module.

We retain notation as in the previous unit. In particular, K is a complete nonarchimedean
field, and Fρ is the completion of K(t) for the ρ-Gauss norm for some ρ > 0.

1 Why Frobenius?

It may be helpful to review the current state of affairs, to clarify why we need to descend
along Frobenius.

Let V be a finite differential module over Fρ. Then the allowable values of the truncated
spectral norm |D|tsp,V are the real numbers greater than or equal to |d|sp,Fρ

= p1/(p−1)ρ−1,
corresponding to generic radii of convergence less than or equal to ρ.

However, if we want to calculate the truncated spectral norm using the Newton poly-
gon of a twisted polynomial, we cannot distinguish among values less than or equal to the
operator norm |d|Fρ

= ρ−1. In particular, we cannot use this technique to prove a decompo-
sition theorem for differential modules that separates components of spectral norm between
p1/(p−1)ρ−1 and ρ−1.

One way one might want to get around this is to consider not d but a high power of d,
particularly a pn-th power. The trouble with this is that iterating a derivation does not give
another derivation, but something much more complicated.

Instead, we will try to differentiate with respect to tp
n

instead of with respect to t. This
will have the effect of increasing the spectral norm, so that we can push it into the range
where Newton polygons become useful.

2 p-th roots

But first, we must make some calculations in answer to the following question: if two p-adic
numbers are close together, how close are their p-th powers, or their p-th roots?

We observed in the previous unit that when m is a positive integer coprime to p,

|t− η| < λ|η| ⇔ |tm − ηm| < λ|η|m (λ ∈ (0, 1)).

This breaks down for m = p, because a primitive p-th root of unity ζp satisfies |1 − ζp| < 1.
The quantities 1 − ζm

p for m = 1, . . . , p− 1 are Galois conjugates, so

|1 − ζp| =

∣

∣

∣

∣

∣

p−1
∏

m=1

(1 − ζm
p )

∣

∣

∣

∣

∣

1/(p−1)

= |p|1/(p−1) = p−1/(p−1)
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since the product is the derivative of T p − 1 evaluated at T = 1.

Lemma 1. Pick t, η ∈ K.

(a) For λ ∈ (0, 1), if |t− η| ≤ λ|η|, then

|tp − ηp| ≤ max{λp, p−1λ}|ηp| =

{

λp|ηp| λ ≥ p−1/(p−1)

p−1λ|ηp| λ ≤ p−1/(p−1).

(b) Suppose ζp ∈ K. If |tp − ηp| ≤ λ|ηp|, then there exists m ∈ {0, . . . , p− 1} such that

|t− ζm
p η| ≤ min{λ1/p, pλ}|η| =

{

λ1/p|η| λ ≥ p−p/(p−1)

pλ|η| λ ≤ p−p/(p−1).

Moreover, if λ ≥ p−p/(p−1), we may always take m = 0.

We will use repeatedly, and without comment, the fact that

λ 7→ max{λp, p−1λ}, λ 7→ min{λ1/p, pλ}

are strictly increasing functions from [0, 1] to itself that are inverse to each other.

Proof. There is no harm in assuming ζp ∈ K for both parts. For (a), factor tp − ηp as t− η
times t− ηζm

p for m = 1, . . . , p− 1, and write

t− ηζm
p = (t− η) + η(1 − ζm

p ).

If |t − η| ≥ p−1/(p−1)|η|, then t − η is the dominant term, otherwise η(1 − ζm
p ) dominates.

This gives the claimed bounds.
For (b), consider the Newton polygon of

tp − ηp − c =

p−1
∑

i=0

(

p

i

)

ηi(t− η)p−i − c

viewed as a polynomial in t − η. Suppose |c| = λ|ηp|. If λ ≥ p−p/(p−1), then the terms
(t − η)p and c dominate, and all roots have norm λ1/p|η|. Otherwise, the terms (t − η)p,
p(t−η)ηp−1, and c dominate, so one root has norm pλ|η| and the others are larger; repeating
with η replaced by ζm

p η for m = 0, . . . , p− 1 gives p distinct roots, which accounts for all of
them.

Corollary 2. Let T : KJtp−ηpK → KJt−ηK be the substitution tp−ηp 7→ ((t−η)+η)p−ηp.

(a) If f ∈ K〈(tp − ηp)/(λ|ηp|)〉 for some λ ∈ (0, 1), then T (f) ∈ K〈(t − η)/(λ′|η|)〉 for
λ′ = min{λ1/p, pλ}.

(b) If T (f) ∈ K〈(t− η)/(λ|η|)〉 for some λ ∈ (p−1/(p−1), 1), then f ∈ K〈(tp − ηp)/(λ′|ηp|)〉
for λ′ = λp.

(c) Suppose K contains a primitive p-th root of unity ζp. For m = 0, . . . , p − 1, let Tm :
KJtp − ηpK → KJt − ζm

p ηK be the substitution tp − ηp 7→ ((t − ζm
p η) + ζm

p η)
p − ηp. If

for some λ ∈ (0, p−1/(p−1)] one has Tm(f) ∈ K〈(t− ζm
p η)/(λ|η|)〉 for m = 0, . . . , p− 1,

then f ∈ K〈(tp − ηp)/(λ′|ηp|)〉 for λ′ = p−1λ.
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3 Moving along Frobenius

Let F ′
ρ be the completion of K(tp) for the ρp-Gauss norm, viewed as a subfield of Fρ, and

equipped with the derivation d′ = d
dtp

. We then have

d =
dtp

dt
d′ = ptp−1d′.

Given a finite differential module (V ′, D′) over F ′
ρ, we may view ϕ∗V ′ = V ′ ⊗ Fρ as a

differential module over Fρ for the derivation D = ptp−1D′ ⊗ d as a differential

D(v ⊗ f) = ptp−1D′(v) ⊗ f + v ⊗ d(f).

Lemma 3. Let (V ′, D′) be a finite differential module over F ′
ρ. Then

IR(ϕ∗V ′) ≥ min{IR(V ′)1/p, pIR(V ′)}.

Proof. For any λ < IR(ϕ∗V ′), any complete extension L of K, and any generic point tρ ∈ L
relative to K of norm ρ, (ϕ∗V ′) ⊗ L〈(tp − tpρ)/(λρ

p)〉 admits a basis of horizontal sections.

By Corollary 2(a), V ′ ⊗ L〈(t− tρ)/(min{λ1/p, pλ}ρ)〉 does likewise.

For V a differential module over Fρ, define the Frobenius descendant of V as the module
ϕ∗V obtained from V by restriction along F ′

ρ → Fρ, viewed as a differential module over F ′
ρ

with differential D′ = p−1t−p+1D. Note that this operation commutes with duals.
For m = 0, . . . , p − 1, let Wm be the differential module over F ′

ρ with one generator v,
such that

D(v) =
m

p
t−pv.

From the Newton polynomial associated to v, we read off IR(Wm) = p−p/(p−1) for m 6= 0.
(You may think of the generator v as a proxy for tm.)

Lemma 4. (a) For V a differential module over Fρ, there are canonical isomorphisms
ιm : (ϕ∗V ) ⊗Wm

∼= ϕ∗V for m = 0, . . . , p− 1.

(b) For V a differential module over Fρ, a submodule U of ϕ∗V is itself the Frobenius
descendant of a submodule of V if and only if ιm(U ⊗Wm) = U for m = 0, . . . , p− 1.

(c) For V ′ a differential module over F ′
ρ, there is a canonical isomorphism

ϕ∗ϕ
∗V ′ ∼=

p−1
⊕

m=0

(V ′ ⊗Wm).

(d) For V a differential module over Fρ, there is a canonical isomorphism ϕ∗ϕ∗V ∼= V ⊕p.

(e) For V a differential module over Fρ, there are canonical bijections H i(V ) ∼= H i(ϕ∗V )
for i = 0, 1.
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(f) For V1, V2 differential modules over Fρ, there is a canonical isomorphism

ϕ∗V1 ⊗ ϕ∗V2
∼=

p−1
⊕

m=0

Wm ⊗ ϕ∗(V1 ⊗ V2).

Proof. Exercise.

4 Frobenius antecedents and descendants

Unlike Frobenius descendants, Frobenius antecedents can only be constructed in some cases,
namely when the intrinsic radius is sufficiently large.

Theorem 5 (after Christol-Dwork). Let (V,D) be a finite differential module over Fρ such
that IR(V ) > p−1/(p−1). Then there exists a unique differential module (V ′, D′) over F ′

ρ such

that V ∼= ϕ∗V ′ and IR(V ′) > p−p/(p−1). For this V ′, one has in fact IR(V ′) = IR(V )p.

The module V ′ in the theorem is called the Frobenius antecedent of V .

Proof of Theorem 5. We may assume ζp ∈ K, as otherwise we may check everything by
adjoining ζp and then performing a Galois descent at the end.

We first check existence. Since |D|tsp,V < ρ−1, for any x ∈ V , we may define an action of
Z/pZ on V using Taylor series:

ζm
p (x) =

∞
∑

i=0

(ζm
p t− t)i

i!
Di(x).

Take V ′ to be the fixed space for this action; then V ′ is an F ′
ρ-subspace of V , and the map

φ∗V ′ → V is an isomorphism by Hilbert’s Theorem 90. (You can also show this explicitly
by writing down projectors onto the eigenspaces of V for the Z/pZ-action.) By applying the
Z/pZ-action to a basis of horizontal sections of V in a generic disc |t−tρ| ≤ λρ, and invoking
Corollary 2(b), we may construct horizontal sections of V ′ in a generic disc |tp − tpρ| ≤ λpρp.

Hence IR(V ′) ≥ IR(V )p > p−p/(p−1).
To check uniqueness, suppose V ∼= ϕ∗V ′ ∼= ϕ∗V ′′ with IR(V ′), IR(V ′′) > p−p/(p−1). By

Lemma 4, we have
ϕ∗V ∼= ⊕p−1

m=0(V
′ ⊗Wm) ∼= ⊕p−1

m=0(V
′′ ⊗Wm).

For m = 1, . . . , p − 1, we have IR(Wm) = p−p/(p−1); since IR(V ′) > IR(Wm), we have
IR(V ′ ⊗Wm) = p−p/(p−1). Since IR(V ′′) > p−p/(p−1), the factor V ′′ ⊗W0 must be contained
in V ′ ⊗W0 and vice versa.

For the last assertion, note that the proof of existence gives IR(V ′) ≥ IR(V )p, whereas
Lemma 3 gives the reverse inequality.

Corollary 6. Let V ′ be a differential module over F ′
ρ such that IR(V ′) > p−p/(p−1). Then

V ′ is the Frobenius antecedent of ϕ∗V ′, so IR(V ′) = IR(ϕ∗V ′)p.
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The construction of Frobenius antecedents carries over to discs and annuli as follows.

Theorem 7. Let M be a finite differential module over K〈α/t, t/β〉 (we may allow α = 0),
such that IR(M ⊗ Fρ) > p−1/(p−1) for ρ ∈ [α, β] (or equivalently, for ρ = α and ρ = β).
Then there exists a unique differential module M ′ over K〈αp/tp, tp/βp〉 such that M = M ′ ⊗
K〈α/t, t/β〉 and IR(M ′⊗F ′

ρ) > p−p/(p−1) for ρ ∈ [α, β]; this M ′ also satisfies IR(M ′⊗F ′
ρ) =

IR(M ⊗ Fρ)
p for ρ ∈ [α, β].

Proof. For existence and the last assertion, use the Z/pZ-action as in the proof of Theorem 5.
(Note that the proof does not apply directly when α = 0; we must make a separate calculation
on a disc around the origin on which M is trivial.) For uniqueness, apply Theorem 5 for any
single ρ ∈ [α, β].

In the other direction, we can control the intrinsic radius of a Frobenius descendant.

Proposition 8. Let V be a differential module over Fρ. Then

IR(ϕ∗V ) = min{p−1IR(V ), p−p/(p−1)}.

Proof. First suppose IR(V ) > p−1/(p−1). By Theorem 5, we can write V ∼= ϕ∗V ′ for V ′

the Frobenius antecedent. By Lemma 4, ϕ∗V ∼= ⊕p−1
m=0(V

′ ⊗ Wm). In this direct sum,
IR(V ′ ⊗W0) = IR(V ′) > p−p/(p−1) and IR(V ′ ⊗Wm) = IR(Wm) = p−p/(p−1) for m 6= 0.
Hence IR(ϕ∗V ) = p−p/(p−1).

Next suppose IR(V ) ≤ p−1/(p−1). By Lemma 4, ϕ∗ϕ∗V ∼= V ⊕p, so by Lemma 3, IR(V ) ≥
min{IR(ϕ∗V )1/p, pIR(ϕ∗V )}. This forces IR(ϕ∗V ) ≤ p−1IR(V ).

In the other direction, for tρ a generic point of radius ρ and λ ∈ (0, p−1/(p−1)), the
module ϕ∗V ⊗L〈(tp − tpρ)/(p

−1λρp)〉 splits as the direct sum of V ⊗L〈(t− ζm
p tρ)/(λρ)〉 over

m = 0, . . . , p−1. If λ < IR(V ), by applying Corollary 2(c), we obtain IR(ϕ∗V ) ≥ p−1λ.

You might be tempted to think that one can run the last part of the previous proof also
in the case IR(V ) > p−1/(p−1) to prove that IR(ϕ∗V ) ≥ IR(V )p, which would contradict
the first part of the proof. What breaks down in the argument is that in this case, pushing
forward a basis of local horizontal sections of V only gives you (dimV ) local horizontal
sections of ϕ∗V ; what they span is precisely the Frobenius antecedent of V .

5 Subsidiary radii and Frobenius

We now refine Proposition 8 to cover subsidiary radii. This will be tremendously important
when we study variation of the subsidiary radii in the next unit.

Theorem 9. Let V be a finite differential module over Fρ with intrinsic subsidiary radii
s1, . . . , sn. Then the intrinsic subsidiary radii of ϕ∗V comprise the multiset

n
⋃

i=1

{

{sp
i , p

−p/(p−1) (p− 1 times)} si > p−1/(p−1)

{p−1si (p times)} si ≤ p−1/(p−1).
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Proof. It suffices to consider V irreducible. First suppose IR(V ) > p−1/(p−1). Let V ′ be
the Frobenius antecedent of V (as per Theorem 5); note that V ′ is also irreducible. By
Lemma 4, ϕ∗V ∼= ⊕p−1

m=0(V
′ ⊗Wm). Since each Wm has rank 1, V ′ ⊗Wm is also irreducible.

Since IR(V ′) = IR(V )p and IR(V ′ ⊗Wm) = p−p/(p−1) for m 6= 0, we have the claim.
Next suppose IR(V ) ≤ p−1/(p−1). By Proposition 8, we have IR(ϕ∗V ) = p−1IR(V ). Let

W ′ be any irreducible subquotient of ϕ∗V ; then IR(W ′) ≥ IR(ϕ∗V ), so Lemma 3 gives

IR(ϕ∗W ′) ≥ min{IR(W ′)1/p, pIR(W ′)} ≥ min{IR(ϕ∗V )1/p, pIR(ϕ∗V )} = IR(V ). (1)

On the other hand, ϕ∗W ′ is a subquotient of ϕ∗ϕ∗V , which by Lemma 4 is isomorphic to
V ⊕p. Since V is irreducible, each Jordan-Hölder constituent of ϕ∗W ′ must be isomorphic
to V , yielding IR(ϕ∗W ′) = IR(V ). That forces each inequality in (1) to be an equality;
in particular, IR(W ′) and IR(ϕ∗V ) have the same image under the injective map s 7→
min{s1/p, ps}. We conclude that IR(W ′) = IR(ϕ∗V ) = p−1IR(V ), proving the claim.

Corollary 10. Let s1 ≤ · · · ≤ sn be the intrinsic subsidiary radii of V .

(a) For i such that si < p−1/(p−1), the product of the pi smallest intrinsic subsidiary radii
of ϕ∗V is equal to p−pisp

1 · · · s
p
i .

(b) For i such that either i = n or si+1 ≥ p−1/(p−1), the product of the pi+ (p− 1)(n− i)
smallest intrinsic subsidiary radii of ϕ∗V is equal to p−nisp

1 · · · s
p
i .

In particular, the product of the intrinsic subsidiary radii of ϕ∗V is p−npsp
1 · · · s

p
n.

Note that both conditions apply when si = p−1/(p−1); this will be important later.

6 Decomposition by spectral norm

We now extend the decomposition by spectral norm across the barrier |d|Fρ
. This cannot be

done using Frobenius antecedents alone: they give no information in case IR(V ) = p−1/(p−1).

Proposition 11. Let V1, V2 be irreducible finite differential modules over Fρ with IR(V1) 6=
IR(V2). Then H1(V1 ⊗ V2) = 0.

Proof. By dualizing if necessary, we can ensure that IR(V2) > IR(V1). If IR(V1) < p−1/(p−1),
then any short exact sequence 0 → V2 → V → V ∨

1 → 0 splits by the original decomposition
theorem.

Suppose that IR(V1) = p−1/(p−1). Let V ′
2 be the Frobenius antecedent of V2; it is also

irreducible, and IR(V ′
2) = IR(V2)

p > p−p/(p−1). By Theorem 9, each irreducible subquotient
W of ϕ∗V1 satisfies IR(W ) = p−p/(p−1); hence H1(W ⊗ V ′

2) = 0 by the previous case, so
H1(ϕ∗V1 ⊗ V ′

2) = 0 by the snake lemma.
By Lemma 4,

ϕ∗V1 ⊗ ϕ∗V2
∼= ⊕p−1

m=0(ϕ∗V1 ⊗Wm ⊗ V ′
2)

∼= (ϕ∗V1 ⊗ V ′
2)

⊕p.
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(The last isomorphism uses the fact that ϕ∗V1
∼= ϕ∗V1 ⊗ Wm.) This yields H1(ϕ∗V1 ⊗

ϕ∗V2) = 0; since ϕ∗(V1 ⊗ V2) is a direct summand of ϕ∗V1 ⊗ ϕ∗V2 (again by Lemma 4),
H1(ϕ∗(V1 ⊗ V2)) = 0. By Lemma 4 once more, H1(V1 ⊗ V2) = H1(ϕ∗(V1 ⊗ V2)) = 0.

In the general case, 1 ≥ IR(V2) > IR(V1). If IR(V1) > p−1/(p−1), then Theorem 5 implies
that V1, V2 have Frobenius antecedents V ′

1 , V
′
2 , and that any extension 0 → V1 → V → V ∨

2 →
0 itself is the pullback of an extension 0 → V ′

1 → V ′ → (V ′
2)

∨ → 0. To show that any
extension of the first type splits, it suffices to do so for the second type; that is, we may
reduce from V1, V2 to V ′

1 , V
′
2 . By repeating this enough times, we get to a situation where

IR(V1) ≤ p−1/(p−1). We may then apply the previous cases.

From here, the proof of the following theorem is purely formal.

Theorem 12 (Strong decomposition theorem). Let V be a finite differential module over
Fρ. Then there exists a decomposition

V =
⊕

s∈(0,1]

Vs

where every subquotient Ws of Vs satisfies IR(Ws) = s.

Proof. We induct on dimV ; we need only consider V not irreducible. Choose a short exact
sequence 0 → U1 → V → U2 → 0 with U2 irreducible. Split U1 = ⊕s∈(0,1]U1,s where every
subquotient Ws of U1,s satisfies IR(Ws) = s. For each s 6= IR(U2), we have H1(U∨

2 ⊗U1,s) = 0
by repeated application of Proposition 11 plus the snake lemma. Consequently, we have

V = V ′ ⊕
⊕

s 6=IR(U2)

U1,s,

where 0 → U1,IR(U2) → V ′ → U2 → 0 is exact.

As with the original decomposition theorem, we obtain the following corollaries.

Corollary 13. Let V be a finite differential module over Fρ whose intrinsic subsidiary radii
are all less than 1. Then H0(V ) = H1(V ) = 0.

Corollary 14. With V = ⊕s∈(0,1]Vs as in Theorem 12, we have H i(V ) = H i(V1) for i = 0, 1.

This suggests that the difficulties in computing H0 and H1 arise in the case of intrinsic
generic radius 1. We will pursue a closer study of this case in a later unit.

Corollary 15. If V1, V2 are irreducible and IR(V1) < IR(V2), then every irreducible subquo-
tient W of V1 ⊗ V2 satisfies IR(W ) = IR(V1).

Proof. Decompose V1 ⊗ V2 = ⊕s∈(0,1]Vs according to Theorem 12; we have Vs = 0 whenever
s < IR(V1). If some Vs with s > IR(V1) were nonzero, then V1⊗V2 would have an irreducible
submodule of intrinsic radius greater than IR(V1), in violation of a result from a previous
unit.

7



7 Integrality, or lack thereof

It may be useful to keep in mind the following limited integrality result for the intrinsic
radius.

Theorem 16. Let V be a finite differential module over Fρ with intrinsic subsidiary radii
s1, . . . , sn. Let m be the largest integer such that sm = IR(V ). Then for any nonnegative
integer h,

s1 > pp−h/(p−1) =⇒ sm
1 ∈ |F×|p

−h

ρZ.

Proof. For m = 0, we read this off from a Newton polygon. We reduce from m to m− 1 by
applying ϕ∗ and invoking Theorem 9.

The exponent p−h cannot be removed; we will give an example to illustrate this in the
next unit.

8 Off-centered Frobenius descendants

Since pushing forward along Frobenius does not work well on a disc, we must also consider
“off-centered” Frobenius descendants, as follows.

For ρ ∈ (p−1/(p−1), 1], let F ′′
ρ be the completion of K((t − 1)p − 1) under the ρp-Gauss

norm, or equivalently, under the restriction of the ρ-Gauss norm on K(t). (One could allow
K((t− µ)p − µp) for any µ ∈ K of norm 1, but there is no loss of generality in rescaling t to
reduce to the case µ = 1.) For brevity, write u = (t− 1)p − 1. Equip F ′′

ρ with the derivation

d′′ =
d

du
=

1

du/dt
d.

Given a differential module V ′′ over F ′′
ρ , we may view ψ∗V ′′ = V ′′ ⊗ Fρ as a differential

module over Fρ. Given a differential module V over Fρ, we may view the restriction ψ∗V of
V along F ′′

ρ → Fρ as a differential module over F ′′
ρ .

We may apply Lemma 1 with η replaced by η + 1, keeping in mind that |η + 1| = 1 for
|η| ≤ 1. This has the net effect that everything that holds for ϕ also holds for ψ, except that
intrinsic radius must be replaced by generic radius.

Theorem 17. Let (V,D) be a finite differential module over Fρ such that R(V ) > p−1/(p−1).
Then there exists a unique differential module (V ′′, D′′) over F ′′

ρ such that V ∼= ψ∗V ′′ and

R(V ′′) > p−p/(p−1). For this V ′′, one has in fact R(V ′′) = R(V )p.

Theorem 18. Let V be a finite differential module over Fρ with extrinsic subsidiary radii
s1, . . . , sn. Then the subsidiary radii of ψ∗V comprise the multiset

n
⋃

i=1

{

{sp
i , p

−p/(p−1) (p− 1 times)} si > p−1/(p−1)

{p−1si (p times)} si ≤ p−1/(p−1).

Note that one cannot expect Theorem 18 to hold for ρ < p−1/(p−1), as in that case p−p/(p−1)

is too big to appear as a subsidiary radius of ψ∗V .

8



9 Notes

Lemma 1 is taken from [Ked05, §5.3] with some typos corrected.
The Frobenius antecedent theorem of Christol-Dwork [CD94, Théorème 5.4] is slightly

weaker than the one given here: it only applies for IR(V ) > p−1/p. The trouble is that they
use cyclic vectors, which create some regular singularities which they only eliminate under
the stronger hypothesis. Theorem 5 as stated there first appears in [Ked05, Theorem 6.13],
except that there uniqueness is only given if IR(V ′) ≥ IR(V )p.

To the best of my knowledge, the study of Frobenius descendants is original to this pre-
sentation; in particular, Theorems 9 and 18 are original. The strong decomposition theorem
(Theorem 12) is also original; we do not know of a proof without Frobenius descendants.

10 Exercises

1. Prove Lemma 4.

2. Prove that for any finite differential module V ′ over F ′
ρ with IR(V ′) > p−p/(p−1),

H0(V ′) = H0(ϕ∗V ′).
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