\section*{p-adic differential equations}
 18.787, Kiran S. Kedlaya, MIT, fall 2007 Frobenius antecedents and Frobenius descendants

In this unit, we introduce Dwork's technique of descent along Frobenius (or more exactly, descent along the p-th power map on an affine or projective line) to analyze the generic radius of convergence and subsidiary radii of a differential module.

We retain notation as in the previous unit. In particular, K is a complete nonarchimedean field, and F_{ρ} is the completion of $K(t)$ for the ρ-Gauss norm for some $\rho>0$.

1 Why Frobenius?

It may be helpful to review the current state of affairs, to clarify why we need to descend along Frobenius.

Let V be a finite differential module over F_{ρ}. Then the allowable values of the truncated spectral norm $|D|_{\text {tsp }, V}$ are the real numbers greater than or equal to $|d|_{\text {sp }, F_{\rho}}=p^{1 /(p-1)} \rho^{-1}$, corresponding to generic radii of convergence less than or equal to ρ.

However, if we want to calculate the truncated spectral norm using the Newton polygon of a twisted polynomial, we cannot distinguish among values less than or equal to the operator norm $|d|_{F_{\rho}}=\rho^{-1}$. In particular, we cannot use this technique to prove a decomposition theorem for differential modules that separates components of spectral norm between $p^{1 /(p-1)} \rho^{-1}$ and ρ^{-1}.

One way one might want to get around this is to consider not d but a high power of d, particularly a p^{n}-th power. The trouble with this is that iterating a derivation does not give another derivation, but something much more complicated.

Instead, we will try to differentiate with respect to $t^{p^{n}}$ instead of with respect to t. This will have the effect of increasing the spectral norm, so that we can push it into the range where Newton polygons become useful.

$2 p$-th roots

But first, we must make some calculations in answer to the following question: if two p-adic numbers are close together, how close are their p-th powers, or their p-th roots?

We observed in the previous unit that when m is a positive integer coprime to p,

$$
|t-\eta|<\lambda|\eta| \Leftrightarrow\left|t^{m}-\eta^{m}\right|<\lambda|\eta|^{m} \quad(\lambda \in(0,1))
$$

This breaks down for $m=p$, because a primitive p-th root of unity ζ_{p} satisfies $\left|1-\zeta_{p}\right|<1$. The quantities $1-\zeta_{p}^{m}$ for $m=1, \ldots, p-1$ are Galois conjugates, so

$$
\left|1-\zeta_{p}\right|=\left|\prod_{m=1}^{p-1}\left(1-\zeta_{p}^{m}\right)\right|^{1 /(p-1)}=|p|^{1 /(p-1)}=p^{-1 /(p-1)}
$$

since the product is the derivative of $T^{p}-1$ evaluated at $T=1$.
Lemma 1. Pick $t, \eta \in K$.
(a) For $\lambda \in(0,1)$, if $|t-\eta| \leq \lambda|\eta|$, then

$$
\left|t^{p}-\eta^{p}\right| \leq \max \left\{\lambda^{p}, p^{-1} \lambda\right\}\left|\eta^{p}\right|= \begin{cases}\lambda^{p}\left|\eta^{p}\right| & \lambda \geq p^{-1 /(p-1)} \\ p^{-1} \lambda\left|\eta^{p}\right| & \lambda \leq p^{-1 /(p-1)} .\end{cases}
$$

(b) Suppose $\zeta_{p} \in K$. If $\left|t^{p}-\eta^{p}\right| \leq \lambda\left|\eta^{p}\right|$, then there exists $m \in\{0, \ldots, p-1\}$ such that

$$
\left|t-\zeta_{p}^{m} \eta\right| \leq \min \left\{\lambda^{1 / p}, p \lambda\right\}|\eta|= \begin{cases}\lambda^{1 / p}|\eta| & \lambda \geq p^{-p /(p-1)} \\ p \lambda|\eta| & \lambda \leq p^{-p /(p-1)}\end{cases}
$$

Moreover, if $\lambda \geq p^{-p /(p-1)}$, we may always take $m=0$.
We will use repeatedly, and without comment, the fact that

$$
\lambda \mapsto \max \left\{\lambda^{p}, p^{-1} \lambda\right\}, \quad \lambda \mapsto \min \left\{\lambda^{1 / p}, p \lambda\right\}
$$

are strictly increasing functions from $[0,1]$ to itself that are inverse to each other.
Proof. There is no harm in assuming $\zeta_{p} \in K$ for both parts. For (a), factor $t^{p}-\eta^{p}$ as $t-\eta$ times $t-\eta \zeta_{p}^{m}$ for $m=1, \ldots, p-1$, and write

$$
t-\eta \zeta_{p}^{m}=(t-\eta)+\eta\left(1-\zeta_{p}^{m}\right)
$$

If $|t-\eta| \geq p^{-1 /(p-1)}|\eta|$, then $t-\eta$ is the dominant term, otherwise $\eta\left(1-\zeta_{p}^{m}\right)$ dominates. This gives the claimed bounds.

For (b), consider the Newton polygon of

$$
t^{p}-\eta^{p}-c=\sum_{i=0}^{p-1}\binom{p}{i} \eta^{i}(t-\eta)^{p-i}-c
$$

viewed as a polynomial in $t-\eta$. Suppose $|c|=\lambda\left|\eta^{p}\right|$. If $\lambda \geq p^{-p /(p-1)}$, then the terms $(t-\eta)^{p}$ and c dominate, and all roots have norm $\lambda^{1 / p}|\eta|$. Otherwise, the terms $(t-\eta)^{p}$, $p(t-\eta) \eta^{p-1}$, and c dominate, so one root has norm $p \lambda|\eta|$ and the others are larger; repeating with η replaced by $\zeta_{p}^{m} \eta$ for $m=0, \ldots, p-1$ gives p distinct roots, which accounts for all of them.

Corollary 2. Let $T: K \llbracket t^{p}-\eta^{p} \rrbracket \rightarrow K \llbracket t-\eta \rrbracket$ be the substitution $t^{p}-\eta^{p} \mapsto((t-\eta)+\eta)^{p}-\eta^{p}$.
(a) If $f \in K\left\langle\left(t^{p}-\eta^{p}\right) /\left(\lambda\left|\eta^{p}\right|\right)\right\rangle$ for some $\lambda \in(0,1)$, then $T(f) \in K\left\langle(t-\eta) /\left(\lambda^{\prime}|\eta|\right)\right\rangle$ for $\lambda^{\prime}=\min \left\{\lambda^{1 / p}, p \lambda\right\}$.
(b) If $T(f) \in K\langle(t-\eta) /(\lambda|\eta|)\rangle$ for some $\lambda \in\left(p^{-1 /(p-1)}, 1\right)$, then $f \in K\left\langle\left(t^{p}-\eta^{p}\right) /\left(\lambda^{\prime}\left|\eta^{p}\right|\right)\right\rangle$ for $\lambda^{\prime}=\lambda^{p}$.
(c) Suppose K contains a primitive p-th root of unity ζ_{p}. For $m=0, \ldots, p-1$, let T_{m} : $K \llbracket t^{p}-\eta^{p} \rrbracket \rightarrow K \llbracket t-\zeta_{p}^{m} \eta \rrbracket$ be the substitution $t^{p}-\eta^{p} \mapsto\left(\left(t-\zeta_{p}^{m} \eta\right)+\zeta_{p}^{m} \eta\right)^{p}-\eta^{p}$. If for some $\lambda \in\left(0, p^{-1 /(p-1)}\right]$ one has $T_{m}(f) \in K\left\langle\left(t-\zeta_{p}^{m} \eta\right) /(\lambda|\eta|)\right\rangle$ for $m=0, \ldots, p-1$, then $f \in K\left\langle\left(t^{p}-\eta^{p}\right) /\left(\lambda^{\prime}\left|\eta^{p}\right|\right)\right\rangle$ for $\lambda^{\prime}=p^{-1} \lambda$.

3 Moving along Frobenius

Let F_{ρ}^{\prime} be the completion of $K\left(t^{p}\right)$ for the ρ^{p}-Gauss norm, viewed as a subfield of F_{ρ}, and equipped with the derivation $d^{\prime}=\frac{d}{d t^{p}}$. We then have

$$
d=\frac{d t^{p}}{d t} d^{\prime}=p t^{p-1} d^{\prime}
$$

Given a finite differential module $\left(V^{\prime}, D^{\prime}\right)$ over F_{ρ}^{\prime}, we may view $\varphi^{*} V^{\prime}=V^{\prime} \otimes F_{\rho}$ as a differential module over F_{ρ} for the derivation $D=p t^{p-1} D^{\prime} \otimes d$ as a differential

$$
D(v \otimes f)=p t^{p-1} D^{\prime}(v) \otimes f+v \otimes d(f)
$$

Lemma 3. Let $\left(V^{\prime}, D^{\prime}\right)$ be a finite differential module over F_{ρ}^{\prime}. Then

$$
I R\left(\varphi^{*} V^{\prime}\right) \geq \min \left\{I R\left(V^{\prime}\right)^{1 / p}, p I R\left(V^{\prime}\right)\right\}
$$

Proof. For any $\lambda<I R\left(\varphi^{*} V^{\prime}\right)$, any complete extension L of K, and any generic point $t_{\rho} \in L$ relative to K of norm $\rho,\left(\varphi^{*} V^{\prime}\right) \otimes L\left\langle\left(t^{p}-t_{\rho}^{p}\right) /\left(\lambda \rho^{p}\right)\right\rangle$ admits a basis of horizontal sections. By Corollary 2(a), $V^{\prime} \otimes L\left\langle\left(t-t_{\rho}\right) /\left(\min \left\{\lambda^{1 / p}, p \lambda\right\} \rho\right)\right\rangle$ does likewise.

For V a differential module over F_{ρ}, define the Frobenius descendant of V as the module $\varphi_{*} V$ obtained from V by restriction along $F_{\rho}^{\prime} \rightarrow F_{\rho}$, viewed as a differential module over F_{ρ}^{\prime} with differential $D^{\prime}=p^{-1} t^{-p+1} D$. Note that this operation commutes with duals.

For $m=0, \ldots, p-1$, let W_{m} be the differential module over F_{ρ}^{\prime} with one generator v, such that

$$
D(v)=\frac{m}{p} t^{-p} v .
$$

From the Newton polynomial associated to v, we read off $I R\left(W_{m}\right)=p^{-p /(p-1)}$ for $m \neq 0$. (You may think of the generator v as a proxy for t^{m}.)

Lemma 4. (a) For V a differential module over F_{ρ}, there are canonical isomorphisms $\iota_{m}:\left(\varphi_{*} V\right) \otimes W_{m} \cong \varphi_{*} V$ for $m=0, \ldots, p-1$.
(b) For V a differential module over F_{ρ}, a submodule U of $\varphi_{*} V$ is itself the Frobenius descendant of a submodule of V if and only if $\iota_{m}\left(U \otimes W_{m}\right)=U$ for $m=0, \ldots, p-1$.
(c) For V^{\prime} a differential module over F_{ρ}^{\prime}, there is a canonical isomorphism

$$
\varphi_{*} \varphi^{*} V^{\prime} \cong \bigoplus_{m=0}^{p-1}\left(V^{\prime} \otimes W_{m}\right)
$$

(d) For V a differential module over F_{ρ}, there is a canonical isomorphism $\varphi^{*} \varphi_{*} V \cong V^{\oplus p}$.
(e) For V a differential module over F_{ρ}, there are canonical bijections $H^{i}(V) \cong H^{i}\left(\varphi_{*} V\right)$ for $i=0,1$.
(f) For V_{1}, V_{2} differential modules over F_{ρ}, there is a canonical isomorphism

$$
\varphi_{*} V_{1} \otimes \varphi_{*} V_{2} \cong \bigoplus_{m=0}^{p-1} W_{m} \otimes \varphi_{*}\left(V_{1} \otimes V_{2}\right)
$$

Proof. Exercise.

4 Frobenius antecedents and descendants

Unlike Frobenius descendants, Frobenius antecedents can only be constructed in some cases, namely when the intrinsic radius is sufficiently large.

Theorem 5 (after Christol-Dwork). Let (V, D) be a finite differential module over F_{ρ} such that $I R(V)>p^{-1 /(p-1)}$. Then there exists a unique differential module $\left(V^{\prime}, D^{\prime}\right)$ over F_{ρ}^{\prime} such that $V \cong \varphi^{*} V^{\prime}$ and $\operatorname{IR}\left(V^{\prime}\right)>p^{-p /(p-1)}$. For this V^{\prime}, one has in fact $\operatorname{IR}\left(V^{\prime}\right)=\operatorname{IR}(V)^{p}$.

The module V^{\prime} in the theorem is called the Frobenius antecedent of V.
Proof of Theorem 5. We may assume $\zeta_{p} \in K$, as otherwise we may check everything by adjoining ζ_{p} and then performing a Galois descent at the end.

We first check existence. Since $|D|_{\text {tsp }, V}<\rho^{-1}$, for any $x \in V$, we may define an action of $\mathbb{Z} / p \mathbb{Z}$ on V using Taylor series:

$$
\zeta_{p}^{m}(x)=\sum_{i=0}^{\infty} \frac{\left(\zeta_{p}^{m} t-t\right)^{i}}{i!} D^{i}(x)
$$

Take V^{\prime} to be the fixed space for this action; then V^{\prime} is an F_{ρ}^{\prime}-subspace of V, and the map $\phi^{*} V^{\prime} \rightarrow V$ is an isomorphism by Hilbert's Theorem 90. (You can also show this explicitly by writing down projectors onto the eigenspaces of V for the $\mathbb{Z} / p \mathbb{Z}$-action.) By applying the $\mathbb{Z} / p \mathbb{Z}$-action to a basis of horizontal sections of V in a generic disc $\left|t-t_{\rho}\right| \leq \lambda \rho$, and invoking Corollary 2(b), we may construct horizontal sections of V^{\prime} in a generic disc $\left|t^{p}-t_{\rho}^{p}\right| \leq \lambda^{p} \rho^{p}$. Hence $I R\left(V^{\prime}\right) \geq I R(V)^{p}>p^{-p /(p-1)}$.

To check uniqueness, suppose $V \cong \varphi^{*} V^{\prime} \cong \varphi^{*} V^{\prime \prime}$ with $\operatorname{IR}\left(V^{\prime}\right), I R\left(V^{\prime \prime}\right)>p^{-p /(p-1)}$. By Lemma 4, we have

$$
\varphi_{*} V \cong \oplus_{m=0}^{p-1}\left(V^{\prime} \otimes W_{m}\right) \cong \oplus_{m=0}^{p-1}\left(V^{\prime \prime} \otimes W_{m}\right)
$$

For $m=1, \ldots, p-1$, we have $I R\left(W_{m}\right)=p^{-p /(p-1)}$; since $I R\left(V^{\prime}\right)>I R\left(W_{m}\right)$, we have $I R\left(V^{\prime} \otimes W_{m}\right)=p^{-p /(p-1)}$. Since $I R\left(V^{\prime \prime}\right)>p^{-p /(p-1)}$, the factor $V^{\prime \prime} \otimes W_{0}$ must be contained in $V^{\prime} \otimes W_{0}$ and vice versa.

For the last assertion, note that the proof of existence gives $\operatorname{IR}\left(V^{\prime}\right) \geq I R(V)^{p}$, whereas Lemma 3 gives the reverse inequality.

Corollary 6. Let V^{\prime} be a differential module over F_{ρ}^{\prime} such that $I R\left(V^{\prime}\right)>p^{-p /(p-1)}$. Then V^{\prime} is the Frobenius antecedent of $\varphi^{*} V^{\prime}$, so $\operatorname{IR}\left(V^{\prime}\right)=\operatorname{IR}\left(\varphi^{*} V^{\prime}\right)^{p}$.

The construction of Frobenius antecedents carries over to discs and annuli as follows.
Theorem 7. Let M be a finite differential module over $K\langle\alpha / t, t / \beta\rangle$ (we may allow $\alpha=0$), such that $\operatorname{IR}\left(M \otimes F_{\rho}\right)>p^{-1 /(p-1)}$ for $\rho \in[\alpha, \beta]$ (or equivalently, for $\rho=\alpha$ and $\rho=\beta$). Then there exists a unique differential module M^{\prime} over $K\left\langle\alpha^{p} / t^{p}, t^{p} / \beta^{p}\right\rangle$ such that $M=M^{\prime} \otimes$ $K\langle\alpha / t, t / \beta\rangle$ and $\operatorname{IR}\left(M^{\prime} \otimes F_{\rho}^{\prime}\right)>p^{-p /(p-1)}$ for $\rho \in[\alpha, \beta]$; this M^{\prime} also satisfies $\operatorname{IR}\left(M^{\prime} \otimes F_{\rho}^{\prime}\right)=$ $I R\left(M \otimes F_{\rho}\right)^{p}$ for $\rho \in[\alpha, \beta]$.

Proof. For existence and the last assertion, use the $\mathbb{Z} / p \mathbb{Z}$-action as in the proof of Theorem 5. (Note that the proof does not apply directly when $\alpha=0$; we must make a separate calculation on a disc around the origin on which M is trivial.) For uniqueness, apply Theorem 5 for any single $\rho \in[\alpha, \beta]$.

In the other direction, we can control the intrinsic radius of a Frobenius descendant.
Proposition 8. Let V be a differential module over F_{ρ}. Then

$$
I R\left(\varphi_{*} V\right)=\min \left\{p^{-1} I R(V), p^{-p /(p-1)}\right\} .
$$

Proof. First suppose $I R(V)>p^{-1 /(p-1)}$. By Theorem 5, we can write $V \cong \varphi^{*} V^{\prime}$ for V^{\prime} the Frobenius antecedent. By Lemma 4, $\varphi_{*} V \cong \oplus_{m=0}^{p-1}\left(V^{\prime} \otimes W_{m}\right)$. In this direct sum, $I R\left(V^{\prime} \otimes W_{0}\right)=I R\left(V^{\prime}\right)>p^{-p /(p-1)}$ and $I R\left(V^{\prime} \otimes W_{m}\right)=I R\left(W_{m}\right)=p^{-p /(p-1)}$ for $m \neq 0$. Hence $I R\left(\varphi_{*} V\right)=p^{-p /(p-1)}$.

Next suppose $I R(V) \leq p^{-1 /(p-1)}$. By Lemma $4, \varphi^{*} \varphi_{*} V \cong V^{\oplus p}$, so by Lemma 3, $I R(V) \geq$ $\min \left\{I R\left(\varphi_{*} V\right)^{1 / p}, p I R\left(\varphi_{*} V\right)\right\}$. This forces $I R\left(\varphi_{*} V\right) \leq p^{-1} I R(V)$.

In the other direction, for t_{ρ} a generic point of radius ρ and $\lambda \in\left(0, p^{-1 /(p-1)}\right)$, the module $\varphi_{*} V \otimes L\left\langle\left(t^{p}-t_{\rho}^{p}\right) /\left(p^{-1} \lambda \rho^{p}\right)\right\rangle$ splits as the direct sum of $V \otimes L\left\langle\left(t-\zeta_{p}^{m} t_{\rho}\right) /(\lambda \rho)\right\rangle$ over $m=0, \ldots, p-1$. If $\lambda<I R(V)$, by applying Corollary 2(c), we obtain $I R\left(\varphi_{*} V\right) \geq p^{-1} \lambda$.

You might be tempted to think that one can run the last part of the previous proof also in the case $I R(V)>p^{-1 /(p-1)}$ to prove that $I R\left(\varphi_{*} V\right) \geq I R(V)^{p}$, which would contradict the first part of the proof. What breaks down in the argument is that in this case, pushing forward a basis of local horizontal sections of V only gives you ($\operatorname{dim} V$) local horizontal sections of $\varphi_{*} V$; what they span is precisely the Frobenius antecedent of V.

5 Subsidiary radii and Frobenius

We now refine Proposition 8 to cover subsidiary radii. This will be tremendously important when we study variation of the subsidiary radii in the next unit.

Theorem 9. Let V be a finite differential module over F_{ρ} with intrinsic subsidiary radii s_{1}, \ldots, s_{n}. Then the intrinsic subsidiary radii of $\varphi_{*} V$ comprise the multiset

$$
\bigcup_{i=1}^{n} \begin{cases}\left\{s_{i}^{p}, p^{-p /(p-1)}(p-1 \text { times })\right\} & s_{i}>p^{-1 /(p-1)} \\ \left\{p^{-1} s_{i}(p \text { times })\right\} & s_{i} \leq p^{-1 /(p-1)}\end{cases}
$$

Proof. It suffices to consider V irreducible. First suppose $I R(V)>p^{-1 /(p-1)}$. Let V^{\prime} be the Frobenius antecedent of V (as per Theorem 5); note that V^{\prime} is also irreducible. By Lemma $4, \varphi_{*} V \cong \oplus_{m=0}^{p-1}\left(V^{\prime} \otimes W_{m}\right)$. Since each W_{m} has rank $1, V^{\prime} \otimes W_{m}$ is also irreducible. Since $I R\left(V^{\prime}\right)=I R(V)^{p}$ and $I R\left(V^{\prime} \otimes W_{m}\right)=p^{-p /(p-1)}$ for $m \neq 0$, we have the claim.

Next suppose $I R(V) \leq p^{-1 /(p-1)}$. By Proposition 8, we have $I R\left(\varphi_{*} V\right)=p^{-1} I R(V)$. Let W^{\prime} be any irreducible subquotient of $\varphi_{*} V$; then $I R\left(W^{\prime}\right) \geq I R\left(\varphi_{*} V\right)$, so Lemma 3 gives

$$
\begin{equation*}
I R\left(\varphi^{*} W^{\prime}\right) \geq \min \left\{I R\left(W^{\prime}\right)^{1 / p}, p I R\left(W^{\prime}\right)\right\} \geq \min \left\{I R\left(\varphi_{*} V\right)^{1 / p}, p I R\left(\varphi_{*} V\right)\right\}=I R(V) \tag{1}
\end{equation*}
$$

On the other hand, $\varphi^{*} W^{\prime}$ is a subquotient of $\varphi^{*} \varphi_{*} V$, which by Lemma 4 is isomorphic to $V^{\oplus p}$. Since V is irreducible, each Jordan-Hölder constituent of $\varphi^{*} W^{\prime}$ must be isomorphic to V, yielding $I R\left(\varphi^{*} W^{\prime}\right)=I R(V)$. That forces each inequality in (1) to be an equality; in particular, $I R\left(W^{\prime}\right)$ and $I R\left(\varphi_{*} V\right)$ have the same image under the injective map $s \mapsto$ $\min \left\{s^{1 / p}, p s\right\}$. We conclude that $I R\left(W^{\prime}\right)=I R\left(\varphi_{*} V\right)=p^{-1} I R(V)$, proving the claim.
Corollary 10. Let $s_{1} \leq \cdots \leq s_{n}$ be the intrinsic subsidiary radii of V.
(a) For i such that $s_{i}<p^{-1 /(p-1)}$, the product of the pi smallest intrinsic subsidiary radii of $\varphi_{*} V$ is equal to $p^{-p i} s_{1}^{p} \cdots s_{i}^{p}$.
(b) For i such that either $i=n$ or $s_{i+1} \geq p^{-1 /(p-1)}$, the product of the $p i+(p-1)(n-i)$ smallest intrinsic subsidiary radii of $\varphi_{*} V$ is equal to $p^{-n i} s_{1}^{p} \cdots s_{i}^{p}$.
In particular, the product of the intrinsic subsidiary radii of $\varphi_{*} V$ is $p^{-n p} s_{1}^{p} \cdots s_{n}^{p}$.
Note that both conditions apply when $s_{i}=p^{-1 /(p-1)}$; this will be important later.

6 Decomposition by spectral norm

We now extend the decomposition by spectral norm across the barrier $|d|_{F_{\rho}}$. This cannot be done using Frobenius antecedents alone: they give no information in case $\operatorname{IR}(V)=p^{-1 /(p-1)}$.

Proposition 11. Let V_{1}, V_{2} be irreducible finite differential modules over F_{ρ} with $\operatorname{IR}\left(V_{1}\right) \neq$ $I R\left(V_{2}\right)$. Then $H^{1}\left(V_{1} \otimes V_{2}\right)=0$.
Proof. By dualizing if necessary, we can ensure that $I R\left(V_{2}\right)>I R\left(V_{1}\right)$. If $I R\left(V_{1}\right)<p^{-1 /(p-1)}$, then any short exact sequence $0 \rightarrow V_{2} \rightarrow V \rightarrow V_{1}^{\vee} \rightarrow 0$ splits by the original decomposition theorem.

Suppose that $I R\left(V_{1}\right)=p^{-1 /(p-1)}$. Let V_{2}^{\prime} be the Frobenius antecedent of V_{2}; it is also irreducible, and $I R\left(V_{2}^{\prime}\right)=I R\left(V_{2}\right)^{p}>p^{-p /(p-1)}$. By Theorem 9, each irreducible subquotient W of $\varphi_{*} V_{1}$ satisfies $I R(W)=p^{-p /(p-1)}$; hence $H^{1}\left(W \otimes V_{2}^{\prime}\right)=0$ by the previous case, so $H^{1}\left(\varphi_{*} V_{1} \otimes V_{2}^{\prime}\right)=0$ by the snake lemma.

By Lemma 4,

$$
\begin{aligned}
\varphi_{*} V_{1} \otimes \varphi_{*} V_{2} & \cong \oplus_{m=0}^{p-1}\left(\varphi_{*} V_{1} \otimes W_{m} \otimes V_{2}^{\prime}\right) \\
& \cong\left(\varphi_{*} V_{1} \otimes V_{2}^{\prime}\right)^{\oplus p}
\end{aligned}
$$

(The last isomorphism uses the fact that $\varphi_{*} V_{1} \cong \varphi_{*} V_{1} \otimes W_{m}$.) This yields $H^{1}\left(\varphi_{*} V_{1} \otimes\right.$ $\left.\varphi_{*} V_{2}\right)=0$; since $\varphi_{*}\left(V_{1} \otimes V_{2}\right)$ is a direct summand of $\varphi_{*} V_{1} \otimes \varphi_{*} V_{2}$ (again by Lemma 4), $H^{1}\left(\varphi_{*}\left(V_{1} \otimes V_{2}\right)\right)=0$. By Lemma 4 once more, $H^{1}\left(V_{1} \otimes V_{2}\right)=H^{1}\left(\varphi_{*}\left(V_{1} \otimes V_{2}\right)\right)=0$.

In the general case, $1 \geq I R\left(V_{2}\right)>I R\left(V_{1}\right)$. If $I R\left(V_{1}\right)>p^{-1 /(p-1)}$, then Theorem 5 implies that V_{1}, V_{2} have Frobenius antecedents $V_{1}^{\prime}, V_{2}^{\prime}$, and that any extension $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2}^{\vee} \rightarrow$ 0 itself is the pullback of an extension $0 \rightarrow V_{1}^{\prime} \rightarrow V^{\prime} \rightarrow\left(V_{2}^{\prime}\right)^{\vee} \rightarrow 0$. To show that any extension of the first type splits, it suffices to do so for the second type; that is, we may reduce from V_{1}, V_{2} to $V_{1}^{\prime}, V_{2}^{\prime}$. By repeating this enough times, we get to a situation where $I R\left(V_{1}\right) \leq p^{-1 /(p-1)}$. We may then apply the previous cases.

From here, the proof of the following theorem is purely formal.
Theorem 12 (Strong decomposition theorem). Let V be a finite differential module over F_{ρ}. Then there exists a decomposition

$$
V=\bigoplus_{s \in(0,1]} V_{s}
$$

where every subquotient W_{s} of V_{s} satisfies $I R\left(W_{s}\right)=s$.
Proof. We induct on $\operatorname{dim} V$; we need only consider V not irreducible. Choose a short exact sequence $0 \rightarrow U_{1} \rightarrow V \rightarrow U_{2} \rightarrow 0$ with U_{2} irreducible. Split $U_{1}=\oplus_{s \in(0,1]} U_{1, s}$ where every subquotient W_{s} of $U_{1, s}$ satisfies $I R\left(W_{s}\right)=s$. For each $s \neq I R\left(U_{2}\right)$, we have $H^{1}\left(U_{2}^{\vee} \otimes U_{1, s}\right)=0$ by repeated application of Proposition 11 plus the snake lemma. Consequently, we have

$$
V=V^{\prime} \oplus \bigoplus_{s \neq I R\left(U_{2}\right)} U_{1, s},
$$

where $0 \rightarrow U_{1, \operatorname{IR}\left(U_{2}\right)} \rightarrow V^{\prime} \rightarrow U_{2} \rightarrow 0$ is exact.
As with the original decomposition theorem, we obtain the following corollaries.
Corollary 13. Let V be a finite differential module over F_{ρ} whose intrinsic subsidiary radii are all less than 1. Then $H^{0}(V)=H^{1}(V)=0$.

Corollary 14. With $V=\oplus_{s \in(0,1]} V_{s}$ as in Theorem 12, we have $H^{i}(V)=H^{i}\left(V_{1}\right)$ for $i=0,1$.
This suggests that the difficulties in computing H^{0} and H^{1} arise in the case of intrinsic generic radius 1 . We will pursue a closer study of this case in a later unit.

Corollary 15. If V_{1}, V_{2} are irreducible and $\operatorname{IR}\left(V_{1}\right)<\operatorname{IR}\left(V_{2}\right)$, then every irreducible subquotient W of $V_{1} \otimes V_{2}$ satisfies $I R(W)=I R\left(V_{1}\right)$.

Proof. Decompose $V_{1} \otimes V_{2}=\oplus_{s \in(0,1]} V_{s}$ according to Theorem 12; we have $V_{s}=0$ whenever $s<I R\left(V_{1}\right)$. If some V_{s} with $s>I R\left(V_{1}\right)$ were nonzero, then $V_{1} \otimes V_{2}$ would have an irreducible submodule of intrinsic radius greater than $\operatorname{IR}\left(V_{1}\right)$, in violation of a result from a previous unit.

7 Integrality, or lack thereof

It may be useful to keep in mind the following limited integrality result for the intrinsic radius.

Theorem 16. Let V be a finite differential module over F_{ρ} with intrinsic subsidiary radii s_{1}, \ldots, s_{n}. Let m be the largest integer such that $s_{m}=\operatorname{IR}(V)$. Then for any nonnegative integer h,

$$
s_{1}>p^{p^{-h} /(p-1)} \quad \Longrightarrow \quad s_{1}^{m} \in\left|F^{\times}\right|^{p^{-h}} \rho^{\mathbb{Z}} .
$$

Proof. For $m=0$, we read this off from a Newton polygon. We reduce from m to $m-1$ by applying φ_{*} and invoking Theorem 9.

The exponent p^{-h} cannot be removed; we will give an example to illustrate this in the next unit.

8 Off-centered Frobenius descendants

Since pushing forward along Frobenius does not work well on a disc, we must also consider "off-centered" Frobenius descendants, as follows.

For $\rho \in\left(p^{-1 /(p-1)}, 1\right]$, let $F_{\rho}^{\prime \prime}$ be the completion of $K\left((t-1)^{p}-1\right)$ under the ρ^{p}-Gauss norm, or equivalently, under the restriction of the ρ-Gauss norm on $K(t)$. (One could allow $K\left((t-\mu)^{p}-\mu^{p}\right)$ for any $\mu \in K$ of norm 1 , but there is no loss of generality in rescaling t to reduce to the case $\mu=1$.) For brevity, write $u=(t-1)^{p}-1$. Equip $F_{\rho}^{\prime \prime}$ with the derivation

$$
d^{\prime \prime}=\frac{d}{d u}=\frac{1}{d u / d t} d
$$

Given a differential module $V^{\prime \prime}$ over $F_{\rho}^{\prime \prime}$, we may view $\psi^{*} V^{\prime \prime}=V^{\prime \prime} \otimes F_{\rho}$ as a differential module over F_{ρ}. Given a differential module V over F_{ρ}, we may view the restriction $\psi_{*} V$ of V along $F_{\rho}^{\prime \prime} \rightarrow F_{\rho}$ as a differential module over $F_{\rho}^{\prime \prime}$.

We may apply Lemma 1 with η replaced by $\eta+1$, keeping in mind that $|\eta+1|=1$ for $|\eta| \leq 1$. This has the net effect that everything that holds for φ also holds for ψ, except that intrinsic radius must be replaced by generic radius.
Theorem 17. Let (V, D) be a finite differential module over F_{ρ} such that $R(V)>p^{-1 /(p-1)}$. Then there exists a unique differential module $\left(V^{\prime \prime}, D^{\prime \prime}\right)$ over $F_{\rho}^{\prime \prime}$ such that $V \cong \psi^{*} V^{\prime \prime}$ and $R\left(V^{\prime \prime}\right)>p^{-p /(p-1)}$. For this $V^{\prime \prime}$, one has in fact $R\left(V^{\prime \prime}\right)=R(V)^{p}$.
Theorem 18. Let V be a finite differential module over F_{ρ} with extrinsic subsidiary radii s_{1}, \ldots, s_{n}. Then the subsidiary radii of $\psi_{*} V$ comprise the multiset

$$
\bigcup_{i=1}^{n}\left\{\left\{\begin{array}{ll}
p \\
\left.s_{i}^{p}, p^{-p /(p-1)}(p-1 \text { times })\right\} & s_{i}>p^{-1 /(p-1)} \\
\left\{p^{-1} s_{i}(p \text { times })\right\} & s_{i} \leq p^{-1 /(p-1)}
\end{array}\right.\right.
$$

Note that one cannot expect Theorem 18 to hold for $\rho<p^{-1 /(p-1)}$, as in that case $p^{-p /(p-1)}$ is too big to appear as a subsidiary radius of $\psi_{*} V$.

9 Notes

Lemma 1 is taken from $[\operatorname{Ked} 05, \S 5.3]$ with some typos corrected.
The Frobenius antecedent theorem of Christol-Dwork [CD94, Théorème 5.4] is slightly weaker than the one given here: it only applies for $I R(V)>p^{-1 / p}$. The trouble is that they use cyclic vectors, which create some regular singularities which they only eliminate under the stronger hypothesis. Theorem 5 as stated there first appears in [Ked05, Theorem 6.13], except that there uniqueness is only given if $\operatorname{IR}\left(V^{\prime}\right) \geq I R(V)^{p}$.

To the best of my knowledge, the study of Frobenius descendants is original to this presentation; in particular, Theorems 9 and 18 are original. The strong decomposition theorem (Theorem 12) is also original; we do not know of a proof without Frobenius descendants.

10 Exercises

1. Prove Lemma 4.
2. Prove that for any finite differential module V^{\prime} over F_{ρ}^{\prime} with $\operatorname{IR}\left(V^{\prime}\right)>p^{-p /(p-1)}$, $H^{0}\left(V^{\prime}\right)=H^{0}\left(\varphi^{*} V^{\prime}\right)$.
