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Convergence of solutions of p-adic differential equations

In this unit, we consider the radius of convergence of a local horizontal section of such a
differential module. In particular, we define a fundamental invariant, the generic radius of
convergence, and some related invariants, the subsidiary radii.

1 Radius of convergence on a disc

View K〈α/t, t/β〉 as a differential ring with derivation d = d
dt

, the formal differentiation in
the variable t. Note that this does indeed carry K〈α/t, t/β〉 into itself.

Proposition 1. Any finite differential module over K〈α/t, t/β〉 is torsion-free, and hence
free.

Thus I could omit saying “free” in many statements, though I will continue to do so for
emphasis.

Proof. Exercise.

Let M be a finite free differential module over K〈t/β〉. The fundamental theorem of
p-adic ordinary differential equations, if it were true, would say that M ⊗ K〈t/ρ〉 admits a
basis of horizontal elements (elements in the kernel of D) for any ρ ∈ [0, β). Unfortunately,
this is simply false, as we saw in the introduction; it already fails for the module M = K〈t/β〉
with D(x) = x, when β > p−1/(p−1).

We define the radius of convergence for M around 0, denoted R(M), as the supremum
of the set of ρ ∈ (0, β) such that M ⊗K〈t/ρ〉 has a basis of horizontal elements. We will see
a bit later (Corollary 5) that the set is nonempty, so this supremum makes sense.

Writing everything in terms of such a basis, we see that the only elements of any M ⊗
K〈t/ρ〉 that can be horizontal are the K-linear combinations of the basis elements; we call
such linear combinations local horizontal sections of M . (As I may have done before, I use
the word “section” because I am thinking geometrically, in terms of a vector bundle equipped
with a connection.)

Here are some easy consequences of the definition; note the parallels with properties of
the truncated spectral norm. In particular, the proof of (c) below may clarify the proof of
the corresponding property of the truncated spectral norm.

Lemma 2. Let M, M1, M2 be finite free differential modules over K〈t/β〉.

(a) If 0 → M1 → M → M2 → 0 is exact, then

R(M) = min{R(M1), R(M2)}.
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(b) We have
R(M∨) = R(M).

(c) We have
R(M1 ⊗ M2) ≥ min{R(M1), R(M2)},

with equality when R(M1) 6= R(M2).

Proof. For (a), it is clear that R(M) ≤ min{R(M1), R(M2)}; we must check that equality
holds. Choose λ < min{R(M1), R(M2)}, so that M1 ⊗ K〈t/λ〉 and M2 ⊗ K〈t/λ〉 are both
trivial. If we choose a basis of M compatible with the sequence, then the action of D will
be block upper triangular nilpotent, and trivializing M amounts to antidifferentiating the
entries in the nonzero block. We may not be able to perform this antidifferentiation in
K〈t/λ〉, but we can do it in K〈t/λ′〉 for any λ′ < λ. Since we can make λ and λ′ as close to
min{R(M1), R(M2)} as we like, we find R(M) ≥ min{R(M1), R(M2)}.

For (b), we obtain R(M∨) ≥ R(M) from the fact that if M ⊗ K〈t/λ〉 is trivial, then so
is its dual M∨ ⊗ K〈t/λ〉. Since M and M∨ enter symmetrically, we get R(M∨) = R(M).

For (c), the inequality is clear from the fact that the tensor product of two trivial modules
over K〈t/λ〉 is also trivial. If R(M1) < R(M2), then we have

R(M1) = min{R(M1), R(M2)}

≤ min{R(M1 ⊗ M2), R(M∨

2 )}

≤ R(M1 ⊗ M2 ⊗ M∨

2 ).

Moreover, M2 ⊗ M∨

2 contains a trivial submodule (the trace), so M1 ⊗ M2 ⊗ M∨

2 contains
a copy of M ; hence by (a), R(M1 ⊗ M2 ⊗ M∨

2 ) ≤ R(M1). We thus obtain a chain of
inequalities leading to R(M1) ≤ R(M1); this forces the intermediate equality R(M1) =
min{R(M1 ⊗ M2), R(M∨

2 )}. Since R(M1) 6= R(M2) = R(M∨

2 ), we can only have R(M1) =
R(M1 ⊗ M2).

Here is a simple example.

Proposition 3. Let M be the differential module of rank 1 over K〈t/β〉 defined by D(v) = λv
with λ ∈ K. Then

R(M) = min{β, |p|−1/(p−1)|λ|−1}.

Proof. Exercise.

In general, the radius of convergence is difficult to compute. To get a better handle on it,
we introduce another invariant which looks more complicated to define but has much simpler
behavior; this is the generic radius of convergence introduced below.
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2 Generic radius of convergence

For ρ > 0, let Fρ be the completion of K(t) under the ρ-Gauss norm | · |ρ. Put d = d
dt

on
K(t); then d extends by continuity to Fρ, and

|d|Fρ
= ρ−1, |d|sp,Fρ

= lim
n→∞

|n!|1/nρ−1 = p−1/(p−1)ρ−1.

Let (V, D) be a finite differential module over Fρ. We define the generic radius of convergence
(or for short, the generic radius) of V to be

R(V ) = p−1/(p−1)|D|−1
tsp,V ;

note that R(V ) > 0. We will see later (Proposition 10) that this does indeed compute the
radius of convergence of horizontal sections of V on a “generic disc”.

In the interim, we note the following relationship with the usual radius of convergence.
In the language of Dwork, this is a transfer theorem, because it transfers convergence infor-
mation from one disc to another.

Theorem 4. For any finite free differential module M over K〈t/ρ〉, R(M) ≥ R(M ⊗ Fρ).
That is, the radius of convergence is at least the generic radius.

Proof. Suppose λ < ρ and λ < p−1/(p−1)|D|−1
tsp,V . We claim that for any x ∈ M , the Taylor

series

y =
∞

∑

i=0

(−t)i

i!
Di(x) (1)

converges under | · |λ. To see this, pick ǫ > 0 such that λp1/(p−1)(|D|sp,V + ǫ) < 1; then there
exists c > 0 such that |Di(x)| ≤ c(|D|sp,V + ǫ)i for all i. The i-th term of the sum defining y
thus has norm at most λipi/(p−1)c(|D|sp,V + ǫ)i, which tends to 0 as i → ∞.

By differentiating the series expression, we find that

Dy =
∞

∑

i=0

(−t)i

i!
Di+1(x) +

∞
∑

i=1

−(−t)i−1

(i − 1)!
Di(x)

=

∞
∑

i=0

(−t)i

i!
Di+1(x) −

∞
∑

i=0

(−t)i

i!
Di+1(x) = 0.

That is, y is a horizontal section of V ⊗ K〈t/λ〉.
If we run this construction over a basis of M , we obtain horizontal sections of V ⊗K〈t/λ〉

whose reductions modulo t form a basis; they thus form a basis themselves by Nakayama’s
lemma (and the fact that finite differential modules over a PID are free). This proves the
claim.

Corollary 5. For any finite free differential module M over K〈t/ρ〉, R(M) > 0.
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We can translate some basic properties of the truncated spectral radius into properties
of generic radii, leading to the following analogue of Lemma 2. Alternatively, one can first
check Proposition 10 and then simply invoke Lemma 2 itself around a generic point.

Lemma 6. Let V, V1, V2 be finite differential modules over Fρ.

(a) For 0 → V1 → V → V2 → 0 exact,

R(V ) = min{R(V1), R(V2)}.

(b) We have
R(V ∨) = R(V ).

(c) We have
R(V1 ⊗ V2) ≥ min{R(V1), R(V2)},

with equality when R(V1) 6= R(V2).

In some situations, it is more natural to consider the intrinsic generic radius of conver-
gence, or for short the intrinsic radius, defined as

IR(V ) = ρ−1R(V ) =
|d|sp,Fρ

|D|tsp,V

∈ (0, 1].

For emphasis, I will sometimes refer to the usual generic radius of convergence as the extrinsic
generic radius of convergence. The term “intrinsic” is used to connote a certain independence
from scale; see Proposition 11. (It also is more natural from the point of view of the definition
of truncated spectral norm given by Baldassarri and di Vizio, as described in a previous unit.)

3 Some examples in rank 1

An important class of examples is given as follows. For λ ∈ K, let Vλ be the differential
module of rank 1 over Fρ defined by D(v) = λt−1v.

Proposition 7. We have IR(Vλ) = 1 if and only if λ ∈ Zp.

Proof. Exercise.

Proposition 8. We have Vλ
∼= Vλ′ if and only if λ − λ′ ∈ Z.

Proof. Note that Vλ
∼= Vλ′ if and only if Vλ−λ′ is trivial, so we may reduce to the case

λ′ = 0. By Proposition 7, Vλ is nontrivial whenever λ /∈ Zp; by direct inspection, Vλ is trivial
whenever λ ∈ Z.

It remains to deduce a contradiction assuming that Vλ is trivial, λ ∈ Zp, and λ /∈ Z.
There is no harm in enlarging K now, so we may assume that K contains a scalar of norm
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ρ; by rescaling, we may reduce to the case ρ = 1. We now have f ∈ F×

1 such that tdf
dt

= λf ;
by multiplying by an element of K×, we can force |f |1 = 1.

Let λ1 be an integer such that λ ≡ λ1 (mod p). Then

∣

∣

∣

∣

d(ft−λ1)

dt

∣

∣

∣

∣

1

= |(λ − λ1)ft−λ1−1|1 ≤ p−1.

On the other hand, the map d induces the derivation d
dt

on the residue field κK(t) of F1, and
likewise on κK((t)). In the latter, it is clear that the kernel of d

dt
is precisely the series with

only exponents divisible by p. In particular, if we expand the residue of f as a power series
around t = 0, it can only have exponents congruent to λ modulo p.

By considering the reduction of f modulo pn and arguing similarly, we find that the
image of f in κK((t)) has only exponents congruent to λ modulo p2, p3, . . . . But since λ /∈ Z,
this means that the image of f in κK((t)) cannot have any terms at all, contradiction.

4 Open discs and annuli

Although we have been talking about closed discs so far, it is clearly quite natural to consider
open discs. After all, if M is a finite free differential module over K〈t/β〉 with radius of
convergence M , that only guarantees that the local horizontal sections exist on the union of
the closed discs of radii strictly less than 1.

We will stick to the following convention, which I’ll explain just in the half-open case
(since I can consider a fully open disc or annulus as the union of two half-opens pasted
together along a common boundary). By a finite differential module M on the half-open
annulus α ≤ |t| < β (which becomes a disc if α = 0), let us mean a sequence of finite
free differential modules Mi over K〈α/t, t/βi〉 with β1, β2, . . . an increasing sequence with
limit β, together with isomorphisms Mi+1 ⊗K〈α/t, t/βi〉 ∼= Mi. In geometric language, this
corresponds to a locally free coherent sheaf on the corresponding rigid or Berkovich analytic
space, equipped with a connection.

It is unambiguous to refer to the generic radius of convergence R(M ⊗Fρ) for ρ ∈ [α, β);
simply restrict to some interval [α, βi] containing ρ and make the definition there.

5 A cautionary note

Let M be a differential module over K〈t/β〉 for which IR(M⊗Fβ) = 1. Then by Theorem 4,
for any ρ ∈ [0, β), M ⊗ K〈t/ρ〉 is trivial, so we have an isomorphism

M ⊗ K〈t/ρ〉 ∼= K〈t/ρ〉⊕n

of differential modules.
Now let M be a differential module over K〈α/t, t/β〉 for which IR(M ⊗ Fρ) = 1 for

all ρ ∈ [α, β]. This most favorable situation was originally thought to be analogous to the
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situation of regular singularities in the complex setting. In particular, it was believed that
for any α < γ ≤ δ < β, it would be possible to write

M ⊗ K〈γ/t, t/δ〉 ∼= Mλ1
⊕ · · · ⊕ Mλn

for some λ1, . . . , λn ∈ Zp, where Mλ is the differential module of rank defined by D(v) = λt−1v
(as in the previous section).

This hope was dashed when a counterexample was exhibited by Monsky; it is the rank
2 differential module associated to the differential polynomial p(1 − x)T 2 − xT − a, where
a ∈ Zp is constructed so that

lim inf
m→+∞

|a + m|1/m < 1, lim inf
m→+∞

|a − m|1/m = 1. (2)

(The existence of such a is left as an exercise, or see [DR77, §7.20].) I plan to expand on
this in a further unit; in the meantime, see [DR77, §7] for further discussion.

What this suggests is the hypothesis on the intrinsic radius needs to be supplemented
with some extra hypotheses in order to get the decomposition we want. We will see one such
hypothesis later (the existence of a Frobenius structure); in the interim, see the notes for
further discussion.

6 Geometric interpretation

You might be wondering why we call R(V ) the generic radius of convergence; here is the
construction that explains the name. First, the geometric motivation. Say we have f ∈ Fρ

given by a limit of a Cauchy sequence f1, f2, . . . in K(t). For any complete extension L of K
and any tρ ∈ L of norm ρ, we can evaluate the fi(tρ) to get a convergent sequence provided
that fi does not have a pole in the disc |t − tρ| < ρ.

However, the poles of elements of K(t) belong to F alg. So suppose we take tρ to be
a generic point of norm ρ relative to F , i.e., an element of some larger complete nonar-
chimedean field such that the disc |t − tρ| < ρ contains no elements of F alg. Then we can
evaluate each of the fi(tρ) to get a convergent sequence, and thus evaluate f(tρ).

Let us turn this geometric thinking into algebra. Let L be the completion of K(tρ) for the
ρ-Gauss norm. For any λ ∈ (0, ρ), embed K[t] into L〈(t−tρ)/λ〉 by mapping t to tρ +(t−tρ).
Note that the image of f has constant term f(tρ), whose norm is strictly greater than that
of the remaining terms of the image. Thus each nonzero element of K[t] maps to a unit in
L〈(t − tρ)/λ〉, so we can extend to isometric embeddings of K(t) and Fρ.

By tensoring with each L〈(t−ρ)/λ〉, we obtain a finite differential module V ′ on the open
disc of radius ρ centered at tρ. We can speak of the radius of convergence of this module
using the previous definition.

We already made the previous observation, but let us now formalize it.

Lemma 9. For any f ∈ Fρ and any λ < ρ, |f |ρ equals the λ-Gauss norm of f within
L〈(t − tρ)/λ〉.
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Proof. This holds because the constant term f(tρ) is dominant.

Proposition 10. The generic radius of convergence of V is equal to the radius of convergence
of V ′.

Proof. Let Gλ be the completion of L(t − tρ) for the λ-Gauss norm. If we now compute
|D|tsp,V in terms of some basis and apply Lemma 9 to every matrix entry in the calculation,
we get the same norms whether we work in Fρ or Gλ. In other words,

|D|tsp,V ⊗Gλ
= max{|d|sp,Gλ

, |D|tsp,V } = max{p−1/(p−1)λ−1, |D|tsp,V }.

On one hand, this implies R(V ) ≤ R(V ′) by applying Theorem 4 to V ⊗ L〈(t− tρ)/λ〉 for a
sequence of values of λ converging to ρ.

On the other hand, pick any λ < R(V ⊗ LJt − tρK); then V ⊗ Gλ is a trivial differential
module, so the truncated spectral norm of D on it is p−1/(p−1)λ−1. We thus have

|D|tsp,V ≤ p−1/(p−1)λ−1,

so R(V ) ≥ λ. This yields R(V ) ≥ R(V ′).

Here is an example illustrating both the use of the geometric interpretation and a good
transformation property of the intrinsic normalization.

Proposition 11. Let m be a positive integer coprime to p, and let fm : Fρ → Fρm be the
map t 7→ tm. Then for any finite differential module V over Fρ, IR(V ) = IR(V ⊗ Fρm).

Proof. This follows from the geometric interpretation plus the fact that

|t − tρ| < cρ ⇔ |tm − tmρ | < cρm (c ∈ (0, 1)), (3)

whose proof is left as an exercise.

7 Subsidiary radii

Let V be a finite differential module over Fρ. Let V1, . . . , Vm be the Jordan-Hölder con-
stituents of V ; that is, take a maximal filtration of V by differential submodules, and let
V1, . . . , Vm be the successive quotients. (It is a standard algebra exercise that the resulting
list does not depend on the filtration up to ordering.)

We define the multiset of generic radii of subsidiary convergence, or for short subsidiary
radii, to be the multiset consisting of R(Vi) with multiplicity dim Vi for i = 1, . . . , m. We
also have intrinsic (generic) radii of subsidiary convergence obtained by multiplying the
subsidiary radii by ρ−1. You may want to think of the product of the subsidiary radii (or
the intrinsic subsidiary radii) as an analogue of irregularity over C((z)); this analogy will be
further supported later.

It is not yet clear how to interpret the subsidiary radii as the radii of convergence of
anything. We will give this interpretation in a later unit.
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8 Notes

The notion of considering a “generic disc” as above originates in the work of Dwork [Dwo73].
Our definition of the generic radius of convergence is taken from Christol and Dwork [CD94].
The intrinsic radius of convergence was introduced in [Ked07], where it is called the “toric
normalization”; it also figures prominently in the coordinate-free treatment of generic radii
of convergence given in [BdV07].

A theory of exponents for differential modules on an annulus with intrinsic radius of
convergence 1 everywhere was developed by Christol and Mebkhout [CM97, §4–5]; an alter-
nate development was later given by Dwork [Dwo97] (see also [DGS94, §6]). The exponents
are elements of the quotient Zp/Z; this makes the construction somewhat complicated, as
one must use archimedean considerations to identify a p-adic number, in a manner we will
not elaborate further here. When the differences between exponents satisfy a p-adic non-
Liouville condition (that is, they cannot be approximated unusually well by integers), one
obtains a decomposition into modules of rank 1 [CM97, §6]. This is automatic in case of a
Frobenius structure, as then the set of exponents is invariant under the operation x → xp

and so all of the exponents are forced to be rational numbers, whose differences are always
non-Liouville. See [Loe97] (or a promised later unit) for a detailed exposition.

9 Exercises

1. Prove Proposition 1. (Hint: first prove that K〈α/t, t/β〉 has no nonzero differential ide-
als. Then given a finite differential module over K〈α/t, t/β〉, consider the annihilator
of the torsion submodule.)

2. Exhibit an example showing that the cokernel of d
dt

on K〈α/t, t/β〉 is not spanned over
K by t−1. That is, antidifferentiation with respect to t is not well-defined.

3. Prove Proposition 3. Optional: give an explicit formula for IR(Vλ) in terms of ρ and
the minimum distance from λ to an integer.

4. Prove Proposition 7. (Hint: for (a), consider the cases λ ∈ Zp, λ ∈ oK − Zp, and
λ /∈ oK separately. For (b), use (a) to reduce to the case λ ∈ Zp.)

5. Prove that there exists a ∈ Zp satisfying (2).

6. Prove (3).
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