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Introduction and motivation

In this unit, we list the various ways that p-adic differential equations occur in modern
number theory. We then explain in a bit of detail one example; it is in fact of the original
examples of Dwork that prompted the creation of the whole theory.

Since this unit is intended as an overview, it involves sweeping statements with proofs
not included. Starting with the next unit, things will be done more carefully.

To keep things better organized, I am creating a central references file “references.pdf”
on the web site. However, I will attach to each unit some afternotes, and some exercises; the
latter are optional unless you need a genuine course grade (e.g., if you are an undergraduate).

1 Where are the p-adic differential equations?

Under what circumstances does the consideration of a differential equation involving p-adic
numbers, rather than real or complex numbers, occur in number theory? Let me count the
ways; note that I may not get to discuss all of these in much detail during the semester,
though I’ll try to fit some of them in at the end.

• The original circumstance, which will be described later in this lecture, was Dwork’s
work on the variation of zeta functions of algebraic varieties over finite fields. Roughly
speaking, solving certain p-adic differential equations can give rise to explicit formulas
for number of points on varieties over finite fields.

In contrast to methods involving étale cohomology, methods for studying zeta func-
tions based on p-adic analysis (including also the next item) lend themselves well
to numerical computation. Interest in computing zeta functions for varieties where
straightforward point-counting is not an option (e.g., curves over tremendously large
prime fields) has been driven by potential applications in computer science, the princi-
pal example being cryptography based on elliptic or hyperelliptic curves. (There may
also be some interesting applications generated by coding theory, but this remains to
be seen.)

• Dwork’s work suggested, but did not immediately lead to, a proper analogue of étale
cohomology based on p-adic analytic techniques. Such an analogue was eventually
developed by Berthelot (based on work of Monsky and Washnitzer, and also ideas of
Grothendieck); it is called rigid cohomology (see the unit notes for the origin of the
word “rigid”). It is not yet a fully functional analogue of étale cohomology, particularly
because there are still open problems related to the construction of a good category of
coefficients. These problems are rather closely related to questions concerning p-adic
differential equations, and in fact some of the results presented in this course have been
(or will be) used for this purpose.
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• The subject of p-adic Hodge theory aims to do for the cohomology of varieties over
p-adic fields what ordinary Hodge theory does for the cohomology of varieties over C,
namely abstract away the variety and enable a better understanding of the cohomology
of the variety as an object in its own right. In the p-adic case, the cohomology in ques-
tion is often étale cohomology, which carries the structure of a Galois representation.

The study of such representations, as pioneered by Fontaine, involves a number of
exotic auxiliary rings (“rings of p-adic periods”) which serve their intended purposes
but are otherwise a bit mysterious. More recently, the work of Berger has connected
much of the theory to the study of p-adic differential equations; notably, a key result
that was originally intended for use in p-adic cohomology (the “p-adic local monodromy
theorem”) turned out to imply an important conjecture about Galois representations
(Fontaine’s conjecture on potential semistability).

• There are some interesting analogies between properties of differential equations over
C with meromorphic singularities, and wildly ramified Galois representations of p-adic
fields. At some level, this is suggested by the parallel formulation of the Langlands
conjectures in the number field and function field cases. One can use p-adic differential
equations to interpolate between the two situations, by associating differential equa-
tions to Galois representations (as in the previous item) and then using “differential
invariants” (irregularity) to recover “Galois invariants” (Artin and Swan conductor).

For representations of the étale fundamental group of a variety over a field of positive
characteristic of dimension greater than 1, it is quite a tough problem to construct
meaningful numerical invariants from the Galois point of view. Recent work of Abbes
and Saito attempts to do this, but the resulting quantities are quite difficult to calcu-
late. One can alternatively use p-adic differential equations to define invariants which
are somewhat easier to deal with for some purposes; for instance, one can define a “dif-
ferential Swan conductor” which is guaranteed to be an integer, whereas one does not
know this for the Abbes-Saito conductor. (In fact, the two are expected to coincide;
see Liang Xiao’s thesis project.)

2 Zeta functions of varieties

Let us now say something more detailed about the first item in the previous list. For this, I
must recall properties of zeta functions of algebraic varieties.

For λ in some field K, let Eλ be the elliptic curve over K defined by the equation

Eλ : y2 = x(x − 1)(x − λ)

in the projective plane. Remember that there is one point O = [0 : 1 : 0] at infinity, and
that there is a natural group law on Eλ(K) under which O is the origin, and three points
add to zero if and only if they are collinear (or better, if they are the three intersections of
Eλ with some line; this correctly allows for degenerate cases).
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Theorem 1 (Hasse). Suppose λ belongs to a finite field Fq. Then #Eλ(Fq) = q + 1− aq(λ)
where |aq(λ)| ≤ 2

√
q.

Proof. See [Sil91, Theorem V.1.1].

Hasse’s theorem was later vastly generalized as follows, originally as a set of conjectures
by Weil. (Despite no longer being conjectural, these are still commonly referred to as the
Weil conjectures.) For X an algebraic variety over Fq, the zeta function of X is defined as
the formal power series

ζX(T ) = exp

(

∞
∑

n=1

T n

n
#X(Fqn)

)

;

another way to write it, which makes it look more like zeta functions you’ve seen before, is

ζX(T ) =
∏

x

(1 − T deg(x))−1,

where x runs over Galois orbits of X(Fq), and deg is the size of the orbit. (If you prefer
algebro-geometric terminology: x runs over closed points of X, and deg is the degree over
Fq.) For X = Eλ, one checks (exercise) that

ζX(T ) =
1 − aq(λ)T + qT 2

(1 − T )(1 − qT )
.

Theorem 2 (Dwork, Grothendieck, Deligne, et al). Let X be an algebraic variety over Fq.

Then ζX(T ) represents a rational function of T . Moreover, if X is smooth and proper of

dimension d, we can write

ζX(T ) =
P1(T ) · · ·P2d−1(T )

P0(T ) · · ·P2d(T )
,

where each Pi(T ) has integer coefficients, satisfies Pi(0) = 1, and has all roots in C on the

circle |T | = q−i/2.

Proof. The proof of this theorem is a sufficiently massive undertaking that even a reference
is not reasonable here; instead, we give [Har77, Appendix C] as a metareference.

It is worth pointing out that the first complete proof uses the fact that you can interpret

#X(Fqn) =
∑

i

(−1)i Trace(F n, H i
et(X, Qℓ)),

where for any prime ℓ 6= p, H i
et(X, Qℓ) is the i-th étale cohomology group of X with coeffi-

cients in Qℓ.
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3 Why p-adic differential equations?

All well and good, but there are several downsides of the interpretation in terms of étale
cohomology. One important one is that étale cohomology is not explicitly computable; for
instance, it is not straightforward to describe étale cohomology to a computer well enough
that the computer can make calculations. (The main problem is that while one can write
down étale cocycles, it is very hard to tell whether or not a cocycle is a coboundary.)

Another important downside is that you don’t get extremely good information about
what happens to ζX when you vary X. This is where p-adic differential equations enter the
picture. It was observed by Dwork that when you have a family of algebraic varieties defined
over Q, the same differential equations appear when you study variation of complex periods,
and when you study variation of zeta functions over Fp.

Here is an explicit example due to Dwork. Recall that the hypergeometric series

F (a, b; c; z) =
∞
∑

i=0

a(a + 1) · · · (a + i)b(b + 1) · · · (b + i)

c(c + 1) · · · (c + i)i!
zi

satisfies the hypergeometric differential equation

z(1 − z)y′′ + (c − (a + b + 1)z)y′ − aby = 0.

Set in particular
α(z) = F (1/2, 1/2; 1; z);

over C, α is related to an elliptic integral, for instance, by the formula

α(λ) =
2

π

∫ π/2

0

dθ
√

1 − λ sin2 θ
(0 < λ < 1).

(You can extend this to complex λ by being careful about branch cuts.) This elliptic integral
can be viewed as a period integral for the curve Eλ, i.e., you’re integrating some meromorphic
form on Eλ around some loop (homology class).

Let p 6= 2 be an odd prime. We now try to interpret α(z) as a function of a p-adic
variable rather than a complex variable. Beware that this means z can take any value in a
field with a norm extending the p-adic norm on Q, not just Qp itself. (For the moment, you
can imagine z running over a completed algebraic closure of Qp.)

Lemma 3. The series α(z) converges p-adically for |z| < 1.

Proof. Straightforward.

Dwork discovered that a closely related function admits “analytic continuation”. To
explain what the result says, we define the Igusa polynomial

H(z) =

(p−1)/2
∑

i=0

(

(p − 1)/2

i

)2

zi.
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Modulo p, the roots of H(z) are the values of λ ∈ Fp (which actually all belong to Fp2, for
reasons we will not discuss) for which Eλ is a supersingular elliptic curve, i.e., aq(λ) ≡ 0
(mod p).

Dwork’s analytic continuation result then is the following.

Proposition 4 (Dwork). There exists a series ξ(z) =
∑

j Pi(z)/H(z)i converging uniformly

for |z| ≤ 1 and |H(z)| = 1, with each Pi(z) ∈ Qp[z], such that

ξ(z) = (−1)(p−1)/2 α(z)

α(zp)
(|z| < 1).

Proof. See [vdP86, §7].

Note that ξ itself satisfies a differential equation, which I won’t write out just yet. We
will see it again later.

For λ ∈ Fq, let Zq be the unramified extension of Zp with residue field Fq. Let [λ] be the
unique q-th root of 1 in Zq congruent to λ mod p (the Teichmüller lift of λ).

Theorem 5 (Dwork). If q = pa and λ ∈ Fq is not a root of H(z), then

T 2 − aq(λ)T + q = (T − u)(T − q/u),

where

u = ξ([λ])ξ([λ]p) · · · ξ([λ]p
a−1

).

That is, the quantity u is the “unit root” of the polynomial T 2 − aq(λ)T + q occurring
(up to reversal) in the zeta function.

Proof. See [vdP86, §7].

4 A word of caution

Before we embark on the study of p-adic ordinary differential equations, a cautionary note is
in order, concerning the rather innocuous-looking differential equation y′ = y. Over R or C,
this equation is nonsingular everywhere, and its solutions y = cex are defined everywhere.

Over a p-adic field, things are quite different. As a power series around x = 0, we have

y = c
∞
∑

n=0

xn

n!

and the denominators hurt us rather than helping. In fact, the series only converges for
|x| < p−1/(p−1) (assuming that we are normalizing |p| = p−1). For comparison, note that the
logarithm series

log
1

1 − x
=

∞
∑

n=1

xn

n
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converges for |x| < 1.
The conclusion to be taken away is that there is no fundamental theorem of ordinary

differential equations over the p-adics! In fact, the hypergeometric differential equation
in the previous example was somewhat special; the fact that it had a solution in a disc
where it had no singularities was not a foregone conclusion. One of Dwork’s discoveries
is that this typically happens for differential equations that “come from geometry”, such
as the Picard-Fuchs equations that arise from integrals of algebraic functions (e.g., elliptic
integrals). Another is that one can quantify rather well the obstruction to solving a p-adic
differential equation in a nonsingular disc, using similar techniques to those used to study
obstructions to solving complex differential equations in singular discs.

5 Notes

I alluded above to the notion of an analytic function, defined as a uniform limit of rational
functions with poles prescribed to certain regions. To keep down the background required
for the course, I will stick throughout to this approach of defining everything in terms of
rings, and not making any attempt to introduce analytic geometry over a nonarchimedean
field. However, it must be noted that it is much better in the long run to build this theory in
terms of nonarchimedean analytic geometry; for example, it is pretty hopeless to deal with
partial differential equations without doing so.

That said, there are several ways to develop a theory of analytic spaces over a nonar-
chimedean field. The traditional method is Tate’s theory of rigid analytic spaces, so-called
because one develops everything “rigidly” by imitating the theory of schemes in algebraic
geometry, but using rings of convergent power series instead of polynomials. The canoni-
cal foundational reference for rigid geometry is the book of Bosch, Güntzer, and Remmert
[BGR84], but novices may find the text of Fresnel and van der Put [FvdP04] or the lecture
notes of Bosch [Bos05] more approachable. A more recent method, which in some ways
is more robust, is Berkovich’s theory of nonarchimedean analytic spaces (commonly called
Berkovich spaces), as introduced in [Ber90] and further developed in [Ber93]. For both points
of view, see also the lecture notes of Conrad [Con07].

6 Exercises

Exercises are purely optional unless you are an undergraduate, in which case please see me
at once if you have not done so yet.

1. Explain why the Dwork-Grothendieck-Deligne et al theorem implies Hasse’s theorem
(this includes verifying the formula for the zeta function of Eλ).

2. Check that the usual formula
lim inf
n→∞

|an|−1/n
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for the radius of convergence of the Taylor series
∑

∞

n=0 anx
n still works over a nonar-

chimedean field. (That is, the series converges inside that radius, and diverges outside.)

3. Check that the exponential series has radius of convergence p−1/(p−1).

4. Show that a power series which converges for |x| ≤ 1 may have an integral which
only converges for |x| < 1, but that its derivative still converges for |x| ≤ 1. This is
backwards from the archimedean situation.
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