p-adic differential equations

18.787, Kiran S. Kedlaya, MIT, fall 2007
 Master theorems for slope factorization

I have used several constructions called "slope factorizations" so far. In this unit, I give a general framework that includes all of them.

Throughout this unit only, rings are unital but not necessarily commutative.

1 The master theorems

For R a ring, we define a norm on R as in the case of a field, i.e., it is a function $|\cdot|: R \rightarrow \mathbb{R}_{\geq 0}$ satisfying the following conditions.
(a) For $r \in R,|r|=0$ if and only if $r=0$.
(b) For $r, s \in R,|r+s| \leq \max \{|r|,|s|\}$.
(c) For $r, s \in R,|r s|=|r||s|$.

A plus-minus decomposition of R is a direct sum decomposition $R_{-} \oplus R_{0} \oplus R_{+}$of the additive group of R such that

$$
\begin{aligned}
& 1 \in R_{0}, \quad R_{0} \cdot R_{0} \subseteq R_{0} \\
& \left(R_{0} \oplus R_{-}\right) \cdot R_{-} \cdot\left(R_{0} \oplus R_{-}\right) \subseteq R_{-} \\
& \left(R_{0} \oplus R_{+}\right) \cdot R_{+} \cdot\left(R_{0} \oplus R_{+}\right) \subseteq R_{+} .
\end{aligned}
$$

For $r \in R$, write $f_{-}(r), f_{0}(r), f_{+}(r)$ for the components of r under the decomposition.
Theorem 1. Let R be a ring complete under the norm $|\cdot|$, equipped with a plus-minus decomposition. Then for any $r \in R$ such that

$$
f_{0}(r) \in R_{0}^{\times}, \quad\left|f_{+}(r)\right|<\left|f_{0}(r)\right|, \quad\left|f_{-}(r)\right|<\left|f_{0}(r)\right|
$$

there exists a unique factorization $r=s_{+} s_{-}$with

$$
s_{+} \in R_{0} \oplus R_{+}, \quad s_{-}-1 \in R_{-}, \quad\left|s_{+}\right| \leq\left|f_{0}(r)\right|, \quad\left|s_{-}-1\right|<\left|f_{0}(r)\right| .
$$

Proof. By multiplying on the left by the inverse of $f_{0}(r)$, we may reduce to the case where $f_{0}(r)=1,\left|f_{+}(r)\right|<1,\left|f_{-}(r)\right|<1$. Put $\eta=\max \left\{\left|f_{+}(r)\right|,\left|f_{-}(r)\right|\right\}$.

We first check existence. Put $s_{+, 0}=1+f_{+}(r), s_{-, 0}=1+f_{-}(r)$. Given $s_{+, l}, s_{-, l}$ such that $s_{+, l} \in R_{0} \oplus R_{+},\left|s_{+, l}-1\right| \leq \eta, s_{-, l}-1 \in R_{-},\left|s_{+, l}-1\right| \leq \eta$, put $\delta_{l}=r-s_{+, l} s_{-, l}$. Then set

$$
s_{+, l+1}=s_{+}+f_{0}\left(\delta_{l}\right)+f_{+}\left(\delta_{l}\right), \quad s_{-, l+1}=s_{-}+f_{-}\left(\delta_{l}\right)
$$

We then see that

$$
\begin{aligned}
\left|\delta_{l+1}\right| & =\left|\left(f_{0}\left(\delta_{l}\right)+f_{+}\left(\delta_{l}\right)\right)\left(1-s_{-, l}\right)+\left(1-s_{+, l}\right) f_{-}\left(\delta_{l}\right)\right| \\
& \leq \eta\left|\delta_{l}\right| .
\end{aligned}
$$

Thus the sequences $s_{+, l}, s_{-, l}$ converge to limits s_{+}, s_{-}with the desired properties.
We next check uniqueness; again, we may assume $f_{0}(r)=1$. If $s_{+}^{\prime} s_{-}^{\prime}$ is another factorization of the desired form, put $\rho=\max \left\{\left|s_{+}-s_{+}^{\prime}\right|,\left|s_{-}-s_{-}^{\prime}\right|\right\}$. Put

$$
\begin{aligned}
x & =\left(s_{+}-s_{+}^{\prime}\right) s_{-} \\
& =s_{+}^{\prime}\left(s_{-}^{\prime}-s_{-}\right) \\
& =\left(s_{+}-s_{+}^{\prime}\right)+\left(s_{+}-s_{+}^{\prime}\right)\left(s_{-}-1\right) \\
& =\left(s_{-}^{\prime}-s_{-}^{\prime}\right)+\left(s_{+}^{\prime}-1\right)\left(s_{-}^{\prime}-s_{-}\right)
\end{aligned}
$$

The third expression yields $\left|f_{-}(x)\right| \leq \rho \eta$; the fourth expression yields $\left|f_{0}(x)\right|,\left|f_{+}(x)\right| \leq \rho \eta$. However, the first two expressions together force $|x|=\eta$, which is a contradiction unless $\rho=0$.

Theorem 1 works well for rings of polynomials but not for rings of power series; for that, we must add some extra structure. Let R be a ring equipped with a plus-minus decomposition. A plus-minus grading on R is a pair of functions

$$
\operatorname{deg}_{*}: R_{*} \rightarrow \mathbb{Z}_{\geq 0} \quad(* \in\{+,-\})
$$

satisfying the following conditions.
(a) For $* \in\{+,-\}$ and $r_{1}, r_{2} \in R_{*}, \operatorname{deg}_{*}\left(r_{1}+r_{2}\right) \leq \max \left\{\operatorname{deg}_{*}\left(r_{1}\right), \operatorname{deg}_{*}\left(r_{2}\right)\right\}$.
(b) For $* \in\{+,-\}$ and $r_{1}, r_{2} \in R$, $\operatorname{deg}_{*}\left(f_{*}\left(r_{1} r_{2}\right)\right) \leq \operatorname{deg}_{*}\left(f_{*}\left(r_{1}\right)\right)+\operatorname{deg}_{*}\left(f_{*}\left(r_{2}\right)\right)$.

Theorem 2. Let R be a ring equipped with a norm $|\cdot|$, a plus-minus decomposition, and a plus-minus grading. Assume that for $n \in \mathbb{Z}_{\geq 0}$ and $* \in\{+,-\}$, the set $\left\{r_{*} \in R_{*}: \operatorname{deg}_{*}\left(r_{*}\right) \leq\right.$ $n\}$ is complete under $|\cdot|$. Then for any $r \in R$ such that

$$
f_{0}(r) \in R_{0}^{\times}, \quad\left|f_{+}(r)\right|<\left|f_{0}(r)\right|, \quad\left|f_{-}(r)\right|<\left|f_{0}(r)\right|
$$

there exists a unique factorization $r=s_{+} s_{-}$with

$$
s_{+} \in R_{0} \oplus R_{+}, \quad s_{-}-1 \in R_{-}, \quad\left|s_{+}\right| \leq\left|f_{0}(r)\right|, \quad\left|s_{-}-1\right|<\left|f_{0}(r)\right| .
$$

Proof. The proof is the same as that of Theorem 1, except that we must note that for each $l, \operatorname{deg}_{*}\left(s_{*, l}\right) \leq \operatorname{deg}_{*}\left(f_{*}(r)\right)$. This again allows us to form a limit s_{*} of $s_{*, l}$, and to proceed as before.

