
CHAPTER 18

The p-adic local monodromy theorem

In this chapter, we assert the p-adic local monodromy theorem, and sketch how it can
be proved either using deep properties of p-adic differential equations, or using a theory of
slope filtrations for Frobenius modules over the Robba ring.

1. Statement of the theorem

Remark 18.1.1. Recall that we have defined the Robba ring to be

R = ∪α∈(0,1)K〈α/t, t}};

that is, R consists of formal sums
∑

cit
i which converge in some range α ≤ |t| < 1, but

need not have bounded coefficients. Unlike its subring E †, R is not a field; for instance, the
element

log(1 + t) =
∞

∑

i=1

(−1)i−1

i
ti

is not invertible (because its Newton polygon has infinitely many slopes). More generally,
we have the following easy fact.

Lemma 18.1.2. We have R× = (E†)×.

Definition 18.1.3. Because R consists of series with possibly unbounded coefficients, it
does not carry a natural p-adic topology. The most useful topology on R is the LF topology,
which is the direct limit of the Fréchet topology on each K〈α/t, t}} defined by the | · |ρ for
ρ ∈ [α, 1).

In fact, the ring R is not even noetherian (this is related to an earlier exercise), but the
following useful facts are true; see notes.

Proposition 18.1.4. For an ideal I of R, the following are equivalent.

(a) The ideal I is closed in the LF topology.
(b) The ideal I is finitely generated.
(c) The ideal I is principal.

Proposition 18.1.5. Any finite free module on the half-open annulus with closed inner
radius α and open outer radius 1 is represented by a finite free module over K〈α/t, t}}, and
so corresponds to a finite free module over R. (The first part generalizes to half-open and
open annuli with arbitrary boundary radii.)

Definition 18.1.6. For L a finite separable extension of κK((t)), put

RL = R⊗E† E
†
L.
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We say a finite differential module M over R is quasiconstant if there exists L such that
M⊗RL is trivial. We say M is quasiunipotent if it is a successive extension of quasiconstant
modules; it is equivalent to ask that M ⊗ E †

L be unipotent (i.e., an extension of trivial
differential modules) for some L (exercise).

Quasiunipotent differential modules have many useful properties. For instance, by Propo-
sition 17.2.7, they are all solvable at 1. Another important property is the following.

Proposition 18.1.7. Let M be a quasiunipotent differential module over R. Then the
spaces H0(M), H1(M) are finite dimensional, and there is a perfect pairing

H0(M) ×H1(M∨) → H1(M ⊗M∨) → H1(R) ∼= K
dt

t
.

Proof. This can be reduced to the unipotent case, for which it is an exercise. �

The following important theorem asserts that many naturally occurring differential mod-
ules, including Picard-Fuchs modules, are quasiunipotent. See the notes for further discus-
sion.

Theorem 18.1.8 (p-adic local monodromy theorem). Let M be a finite differential mod-
ule over R admitting a Frobenius structure for some scalar-preserving Frobenius lift. Then
M is quasiunipotent.

2. An example

It may be worth seeing what Theorem 18.1.8 says in an explicit example. This example
was originally considered by Dwork [Dwo74]; the analysis given here is due to Tsuzuki
[Tsu98c, Example 6.2.6], and was cited in the introduction of [Ked04a].

Example 18.2.1. Let p be an odd prime, put K = Qp(π) with πp−1 = −p. Let M be
the differential module of rank 2 over R with the action of D on a basis e1, e2 given by

N =

(

0 t−1

π2t−2 0

)

.

Then M admits a Frobenius structure; this was shown by explicit calculation in [Dwo74],
but can also be derived by consideration of a suitable Picard-Fuchs module. Define the
tamely ramified extension L of κK((t)) by adjoining u such that 4u2 = t, and put

u± = 1 +

∞
∑

n=1

(±1)n (2n)!2

(32π)nn!3
un ∈ K{{u}}.

Define the matrix

U =

(

u+ u−
u d

du
(u+) + (1

2
− πu−1)u+ u d

du
(u−) + (1

2
+ πu−1)u−

)

and use it to change basis; then the action of d
du

on the new basis e+, e− of M ⊗RL is via
the matrix

(

−1
2

y
−1 + πy−2 0

0 −1
2
y−1 − πy−2.

)

.
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That is, M ⊗ RL splits into two differential submodules of rank 1. To render these quasi-
constant, we must adjoin to L to L a square root of y (to eliminate the terms −1

2
y−1) and a

root of the polynomial zp−z = y−1 (which by Example 17.2.10 eliminates the terms ±πy−2).
By further analysis (carried out in [Tsu98c, Example 6.2.6]), one determines that in this

example, the generic Newton slopes are 0 and log p, while the special Newton slopes are both
1
2
log p.

3. The differential approach

There are two general strategies known to be able to prove Theorem 18.1.8. The first is
to start with the following result of Christol-Mebkhout, which follows from the p-adic Fuchs
theorem for annuli (Theorem 12.6.1).

Theorem 18.3.1 (Christol-Mebkhout). Let M be a finite differential module over R
admitting a Frobenius structure for some scalar-preserving Frobenius lift. Suppose that
IR(M ⊗ Fρ) = 1 for ρ ∈ (0, 1) sufficiently close to 1. Then there exists a positive inte-
ger m coprime to p such that M ⊗R[t1/m] is unipotent.

Using this and the Christol-Mebkhout decomposition theorem (Theorem 11.5.4), one
ultimately reduces to checking Theorem 18.1.8 in rank 1, which one can deduce either from
Theorem 17.4.2 or from more elementary considerations.

The reduction process alluded to is not entirely straightforward, and there are multiple
ways to organize it. A rather hands-on approach is given by Mebkhout [Meb02]; an alternate
approach in the language of Tannakian categories is given by André [And02]. In either case,
a key step is to show that differential modules over R with Frobenius structures behave like
representations of a finite p-group in one important respect: if M is absolutely irreducible
(that is, it remains irreducible even after enlarging K), then rank(M) is a power of p (or at
least must be divisible by p if it is greater than 1).

4. The difference approach

The second strategy available for proving Theorem 18.1.8 is to reduce it to Theorem 17.4.2.
The main ingredient is the following theorem, analogous to Theorem 13.4.13 but significantly
subtler. It was originally proved by Kedlaya in [Ked04a] for an absolute Frobenius lift, and
in [Ked07c] in the form stated here. (See also [Ked05b].)

Theorem 18.4.1 (Slope filtration theorem). Let M be a finite free difference module over
R. Then there exists a unique filtration 0 = M0 ⊂ · · · ⊂ Ml = M by difference submodules
with the following properties.

(a) Each successive quotient Mi/Mi−1 is finite free, and is the base extension of a dif-
ference module over E † which is pure of some norm si.

(b) We have s1 > · · · > sl.

Note that in order to apply Theorem 18.4.1 to reduce Theorem 18.1.8 to Theorem 17.4.2,
one must also check the following lemma.

Lemma 18.4.2. Let M be a finite free unit-root difference module over E † such that M⊗R
admits a compatible differential structure. Then this structure is induced by a corresponding
differential structure on M itself.
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Proof. Let N,A be the matrices via which D, φ act on a basis of M . Write the com-
mutation relation between N,A in the form N − ptp−1Aφ(N)A−1 = d

dt
(A)A−1. We deduce

from Lemma 18.4.3 below that N has entries in E †. �

Lemma 18.4.3. Let A be an n×n matrix over oE†, and suppose v ∈ Rn, w ∈ (E †)n satisfy
v − Aφ(v) = w. Then v ∈ (E †)n.

Proof. Exercise, or see [Ked07c, Proposition 1.2.6]. �

5. Applications of the monodromy theorem

The original area of application of the p-adic local monodromy theorem was in the subject
of rigid cohomology; the name comes from the fact that it plays a role analogous to the ℓ-adic
local monodromy theorem of Grothendieck in the subject of étale cohomology. In particular,
Crew [Cre98] showed that Theorem 18.1.8 implies the finite dimensionality of the rigid
cohomology of a curve with coefficients in an overconvergent F -isocrystal; this was later
generalized to arbitrary varieties by Kedlaya [Ked06].

Another area of application of the p-adic local monodromy theorem is in p-adic Hodge
theory. This will be discussed more thoroughly in Chapter 21.

Theorem 18.1.8 is also needed for the proofs of some more mundane facts about differ-
ential modules; it can often be used in lieu of Dwork’s trick (Corollary 15.2.4) when working
over an annulus instead of a disc. Here is a typical example; see notes for further discussion.

Theorem 18.5.1. Let M be a finite free difference module over R = KJtK0 or E† admit-
ting a Frobenius structure for an absolute Frobenius lift. Then

H0(M) = H0(M ⊗R E).

Proof. For the case R = E †, it is shown in [Ked04b] that any F -invariant horizontal
section of M ⊗R E belongs to M . Here is a quick sketch of the argument. One first uses
a technique of de Jong [dJ98a] to show that if v ∈ H0(M ⊗R E), then the induced F -
equivariant horizontal map ψ : M∨ → E has the property that ψ−1(E†) 6= 0, and that
the generic slopes of M∨/ψ−1(E†) has all slopes negative. (This argument uses only the
Frobenius structure, not the differential structure.) One then uses Theorem 18.1.8 (plus
some additional considerations) to show that the short exact sequence

0 → ker(ψ) → ψ−1(E†) → ψ−1(E†)/ ker(ψ) → 0

must split. This yields ψ(M) = E †, forcing v ∈ H0(M).
To check the claim at hand in the case R = E †, we may enlarge K to have algebraically

closed residue field; then Corollary 13.6.4 implies that H0(M ⊗R E) is spanned by one-
dimensional fixed subspaces for the Frobenius action. The previous argument shows that
any generator of one of these subspaces belongs to M , proving the claim.

For the case R = KJtK0, we may use the previous argument to reduce to checking that
H0(M) = H0(M ⊗R E†). Since KJtK0 = K{{t}}∩E† inside R, this is equivalent to checking
that H0(M ⊗R K{{t}}) = H0(M ⊗R R). However, this is evident because M ⊗R K{{t}} is
a trivial differential module by Dwork’s trick (Corollary 15.2.4). �
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Notes

Proposition 18.1.4 is the essential content of a paper of Lazard [Laz62]. Note that it
depends on K being spherically complete, and is false otherwise; however, we have assumed
in this part that K is discretely valued, so we are safe.

The p-adic local monodromy theorem (Theorem 18.1.8) is often referred to in the liter-
ature as “Crew’s conjecture”, because it emerged from the work of Crew [Cre98] on finite
dimensionality of rigid cohomology with coefficients in an overconvergent F -isocrystal. The
original conjecture only concerned modules such that the differential and Frobenius struc-
tures were both defined over E †; this form was restated in a more geometric form by de Jong
[dJ98b]. A closer analysis of Crew’s conjecture was then given by Tsuzuki [Tsu98c], who
explained (using Theorem 17.4.2) how Theorem 18.1.8 would follow from a slope filtration
theorem [Tsu98c, Theorem 5.2.1].

The case of Theorem 18.5.1 with R = E † was originally conjectured by Tsuzuki [Tsu02,
Conjecture 2.3.3]. The case with R = KJtK0 is an older result of de Jong [dJ98a]; the
arguments in [Ked04b] are closely modeled on those of [dJ98a], with the key addition
being the substitution of Theorem 18.1.8 for Dwork’s trick.

In the case of a unit-root Frobenius structure, Theorem 18.5.1 was known prior to the
availability of Theorem 18.1.8. It figures in the work of Cherbonnier-Colmez [CC98], which
we will discuss in Chapter 21 (see Remark 21.2.6); it was also established by Tsuzuki [Tsu96,
Proposition 4.1.1].

Exercises

(1) Prove Lemma 18.4.3. (Hint: reduce to the case where |A|ρ ≤ 1 for ρ ∈ [α, 1).
Then show that |v|ρ is bounded for ρ ∈ [α, 1), by comparing |v|ρ with |v|ρ1/q using
Lemma 15.2.1.)
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