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Newton polygons

In this unit, we then review the theory of Newton polygons for polynomials over fields
with valuations. In the process of doing this, we will also generalize to polynomials twisted
by a differential operator.

1 Slopes and Newton polygons

A normed differential field is a field F equipped with an absolute value | · |F and a derivation
d which is bounded as a linear operator on F over F0 = ker(d). If the absolute value is
nonarchimedean, corresponding to a valuation v, this means that the quantity

r0 = min
f∈F×

{v(d(f)) − v(f)}

is finite. We’ll abbreviate “nonarchimedean normed differential field” to “nonarchimedean
differential field”.

Let F be a nonarchimedean differential field. Let P (T ) =
∑n

i=0
PiT

i be a twisted poly-
nomial of degree n over F . Draw the points in R

2 given by

{(−i, v(fi)) : i = 0, . . . , n, Pi 6= 0}.

Then form the lower convex hull of these points, i.e., take the intersection of every closed
halfplane lying above some nonvertical line containing all the points. The boundary of this
region is called the Newton polygon of P .

Another way to represent the same data is to form the multiset consisting of the slopes
of the polygon, each occurring with multiplicity equal to the width of the corresponding
segment. The total cardinality is at most n, with equality if and only if P0 6= 0; in case of a
shortfall, we conventionally put in +∞ as a slope with the missing multiplicity. This gives
the slope multiset (multiset of slopes) of the twisted polynomial.

Keep in mind that we may take d = 0, in which case r0 = +∞; this gives the usual
Newton polygon of an untwisted polynomial. A key example with d 6= 0 will be the case
F = C((z)) with the z-adic valuation and d = z d

dz
; in this case, r0 = 0.

2 The multiplicativity property

For untwisted polynomials, it was known to Newton (in the case F = C((z))) that for
P, Q ∈ F [T ], the slope multiset of PQ is the union of the slope multisets of P and Q. For
twisted polynomials, this is only partly true; we must account for the extent the derivation
disturbs absolute values, as measured by r0.
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To do this, it is convenient to use yet another representation of the data contained in the
Newton polygon. For r ∈ R, define the sloped valuation function vr on F{T} as

vr

(

∑

i

PiT
i

)

= min
i
{v(Pi) + ri}.

That is, vr is the y-intercept of the supporting line of the Newton polygon of slope r. Note
that for P ∈ F{T}, the function r 7→ vr(P ) is continuous.

Proposition 1 (Robba). For r ≤ r0 and P, Q ∈ F{T}, we have vr(PQ) = vr(P ) + vr(Q).

Proof. By the continuity of r 7→ vr(∗), it suffices to check the claim for r < r0. Write
P =

∑

i PiT
i and Q =

∑

j QjT
j ; then

PQ =
∑

k

(

∑

i+j=k

∑

h≥0

(

i + h

h

)

Pi+hd
h(Qj)

)

T k,

and hence

vr(PQ) ≥ min
h,i,j

{v(Pi+h) + v(bj) + r(i + j) + (v(dh(Qj)) − v(Qj))}

≥ min
h,i,j

{v(Pi+h) + v(Qj) + r(i + j) + hr0}

≥ min
h,i,j

{v(Pi+h) + v(Qj) + r(i + h + j)}.

(1)

This immediately yields vr(PQ) ≥ vr(P ) + vr(Q). To establish equality, let i0 and j0 be the
smallest values of i and j which minimize ri + v(Pi) and rj + v(Qj), respectively; then (1)
achieves its minimum for h = 0, i = i0, j = j0 but not for any other h, i, j with i+j = i0 +j0.
Hence vr(PQ) = vr(P ) + vr(Q).

Corollary 2. For r < r0, the multiplicity of r as a slope of PQ is the sum of the multiplicities
of r as a slope of P and Q.

Proof. This follows from Proposition 1 and the fact that the left and right endpoints of the
segment of slope r in the Newton polygon are the points where the support lines of slightly
smaller and slightly larger slope, respectively, touch the polygon. (Note that this means that
we cannot deduce the same conclusion for r = r0; see exercises.)

Corollary 3. Suppose P factors as (T − c1) · · · (T − cn) where v(ci) < r0 for i = 1, . . . , n.
Then the slopes of P are v(c1), . . . , v(cn); that is, the Newton polygon computes the valuations
of the roots of P (counted with multiplicity).

Note that one can also prove multiplicativity using the following property.

Proposition 4. The Newton polygon of any twisted polynomial and its formal adjoint have
the same multiplicities for slopes less than r0.
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Proof. Exercise. (This can also be easily deduced a posteriori using Proposition 6 below.)

In the other direction, one gets good behavior of vr under the division algorithm provided
that you are dividing by a polynomial with all slopes equal to r, and r is not too large.

Lemma 5. Let P (T ) ∈ F{T} be a polynomial whose slopes are all equal to r < r0. Let
S(T ) ∈ F{T} be any polynomial, and write S = PQ + R with deg(R) < deg(P ). Then

vr(S) = min{vr(P ) + vr(Q), vr(R)}.

Proof. Exercise.

3 Slope factorizations (Hensel’s lemma)

When F is complete for a nonarchimedean absolute value, one has a sort of converse of
Proposition 1.

Proposition 6 (Robba). Let F be a differential field complete for a valuation v. Fix r < r0

and m ∈ Z≥0. Let R ∈ F{T} be a twisted polynomial such that vr(R−T m) > vr(T
m). Then

R can be factored uniquely as PQ, where P ∈ F{T} has degree deg(R) − m and all slopes
less than r, Q ∈ F{T} is monic of degree m and has all slopes greater than r, vr(P −1) > 0,
and vr(Q − T m) > vr(T

m).

Proof. We first check existence. Define sequences {Pl}, {Ql} as follows. Define P0 = 1 and
Q0 = Tm. Given Pl and Ql, write

R − PlQl =
∑

i

aiT
i,

then put

Xl =
∑

i≥m

aiT
i−m, Yl =

∑

i<m

aiT
i

and set Pl+1 = Pl +Xl, Ql+1 = Ql +Yl. Put cl = vr(R−PlQl)− rm, so that c0 > 0. Suppose
that vr(Pl − 1) ≥ c0, vr(Ql − Tm) ≥ c0 + rm, and cl ≥ c0. Then visibly vr(Pl+1 − 1) ≥ c0

and vr(Ql+1 − Tm) ≥ c0 + rm; by Proposition 1,

cl+1 = vr(R − (Pl + Xl)(Ql + Yl)) − rm

= vr(Xl(T
m − Ql) + (1 − Pl)Yl − XlYl) − rm

≥ min{cl + (c0 + rm), c0 + (cl + rm), cl + (cl + rm)} − rm

≥ cl + c0.

By induction on l, we deduce that cl ≥ (l+1)c0. Consequently, the sequences {Pl} and {Ql}
converge under vr, and their limits P and Q have the desired properties.
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We next check uniqueness. Suppose R = P1Q1 is a second such factorization; put c =
min{vr(P − P1), vr(Q − Q1) − vr(T

m)}. Put

X = R − P1Q = (P − P1)Q = P1(Q1 − Q),

and suppose X 6= 0; then vr(X) = c + vr(T
m) by Proposition 1. Write X =

∑

bkT
k, and

choose k such that vr(X) = vr(bkT
k). The equality

X = (P − P1)T
m + (P − P1)(Q − Tm)

shows that we cannot have k < m, while the equality

X = Q1 − Q + (P1 − 1)(Q1 − Q)

shows that we cannot have k ≥ m. This contradiction forces X = 0, proving P = P1, Q = Q1

as desired.

This yields the following.

Theorem 7. Any monic twisted polynomial P ∈ F{T} admits a unique factorization

P = Pr1
· · ·Prm

P+

for some r1 < · · · < rm < r0, where each Pri
is monic with all slopes equal to ri, and P+ is

monic with all slopes at least r0.

Proof. We induct on deg(P ). If P has all slopes at least r0, we may simply set P+ = P ; if
P has all slopes equal to some r < r0, we may set Pr = P . Otherwise, let r1 be the least
slope of P , let r2 be the next smallest slope, and pick r ∈ (r1, r2). Apply Proposition 6 to
P and r, and call the second factor Pr1

. Then apply the induction hypothesis to the first
factor.

Theorem 7 also holds with the factors in the reverse order (exercise).

4 Another version of Hensel’s lemma

You may be more accustomed to thinking of Hensel’s lemma as a statement about lifting
factorization of polynomials from Fp to Zp. That statement also admits a twisted analogue,
also from [Rob80].

Proposition 8. Assume that r0 > 0. Suppose R ∈ oF{T} and that the reduction of R
modulo mF factors into the product PQ of two coprime factors. This factorization then lifts
to a factorization R = PQ in oF{T}.

Proof. Exercise.
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5 Applications in the untwisted case

We will apply the above results to differential modules in the next unit, but for the rest of
this unit, take d = 0. We use the aforementioned properties of Newton polygons (which in
the untwisted case should be familiar) to tie up the loose ends left in our earlier discussion
of extensions of nonarchimedean absolute values. Note that r0 = ∞ in the untwisted case,
so the results do not carry any restrictions on slopes.

We first check that if F is a complete nonarchimedean field, then any finite extension
E of F admits an extension of | · | to an absolute value on E. If E ′ is a field intermediate
between F and E, we may first extend the absolute value to E ′ and then to E. Consequently,
it suffices to check the case where E = F (α) for some α ∈ E, that is, E ∼= F [T ]/(P (T ))
for some monic irreducible polynomial P ∈ F [T ] (the minimal polynomial of α). Apply
Theorem 7; since P (T ) cannot factor nontrivially, we deduce that P must have a single
slope r. We now define an absolute value on E as follows: for β = c0 + c1α + · · ·+ cn−1α

n−1,
with n = deg(P ) = [E : F ], put

|β|E = max
i

{|ci|e
−ri}.

That is, take |β|E to be the e−r-Gauss norm of the polynomial c0 + c1T + · · · + cn−1T
n−1.

The multiplicativity of | · |E is then a consequence of Lemma 5.
We next check that the completion E of an algebraically closed nonarchimedean field F

is itself algebraically closed. Let P (T ) ∈ E[T ] be a monic polynomial of degree d.

Lemma 9. With notation as above, for any ǫ > 0, we can find z ∈ F such that |z| ≤ |P (0)|1/d

and |P (z)| < ǫ.

Proof. If P (0) = 0 we may pick z = 0, so assume P (0) 6= 0. Put P = T d +
∑d−1

i=0
PiT

i. For

any δ > 0, we can pick a polynomial Q = T d +
∑d−1

i=0
Qid

i ∈ F [T ] with |Qi − Pi| < δ for
i = 0, . . . , d − 1.

Now assume δ < min{|P0|, ǫ, ǫ/|P0|}, so that |Q0| = |P0|. By Corollary 3, we can find a
root z ∈ F of Q0 with |z| ≤ |Q0|

1/d = |P0|
1/d. We now have

|P (z)| = |(P − Q)(z)| ≤ δ max{1, |z|}d ≤ δ max{1, |P (0)|} < ǫ,

as desired.

Define a sequence of polynomials P0, P1, . . . as follows. Put P0 = P . Given Pi, apply
Lemma 9 to construct zi with |zi| ≤ |Pi(0)|1/d and |Pi(zi)| < 2−i, then set Pi+1(T ) = Pi(T+zi)
so that Pi+1(0) = Pi(zi). If some Pi satisfies Pi(0) = 0, then z0 + · · · + zi−1 is a root of P .
Otherwise, we get an infinite sequence z0, z1, . . . such that z0 + z1 + · · · converges to a root
of P .
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6 Notes

Newton polygons for differential operators were considered by Dwork and Robba [DR77,
§6.2.3]; the first systematic treatment seems to have been made by Robba [Rob80], and our
results are taken from there. The proofs of Proposition 1 and 6 were self-plagiarized from
[Ked07, Lemma 3.1.5 and Proposition 3.2.2].

7 Exercises

1. Prove Proposition 4.

2. Prove Lemma 5.

3. Give an example with F = C((z)) and d = z d
dz

to show that the conclusion of Corol-
lary 2 need not hold for r = r0, even though Proposition 1 holds for r = r0.

4. Deduce the analogue of Theorem 7 with the factors in the opposite order, without
doing any recalculation. (Hint: the key word here is “opposite”.)

5. State and prove a precise version of the assertion that “the roots of a polynomial
over a complete algebraically closed nonarchimedean field vary continuously in the
coefficients.”

6. Prove Proposition 8.
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