
p-adic differential equations
18.787, Kiran S. Kedlaya, MIT, fall 2007

A little p-adic numerical analysis

In this unit, we introduce some concepts from numerical analysis, and their nonar-
chimedean analogues.

1 Singular values

Until further notice, let A be an n × n matrix over C. One set of numerical invariants we
can attach to A is the list of eigenvalues λ1, . . . , λn, which we sort so that |λ1| ≥ · · · ≥ |λn|.

A second set, which is more useful for numerical analysis, is the singular values. Let
A∗ denote the conjugate transpose (or Hermitian transpose) of A. The matrix A∗A is
real symmetric, so has nonnegative real eigenvalues. The square roots of these eigenvalues
comprise the singular values of A; we denote them σ1, . . . , σn with σ1 ≥ · · · ≥ σn. These are
not invariant under conjugation, but they are invariant under multiplying A on either side
by a unitary matrix.

Let Diag(σ1, . . . , σn) denote the n × n diagonal matrix D with Dii = σi for i = 1, . . . , n.

Theorem 1 (Singular value decomposition). There exist unitary n × n matrices U, V such
that UAV = Diag(σ1, . . . , σn).

Proof. This is equivalent to showing that there is an orthonormal basis of Cn which remains
orthogonal upon applying A. To construct it, start with a vector v ∈ Cn maximizing |Av|/|v|,
then show that for any w ∈ Cn orthogonal to v, Aw is also orthogonal to Av. For further
details, see references in the notes.

Corollary 2. The singular values of A−1 are σ−1
n , . . . , σ−1

1 .

From the singular value decomposition, we may infer a convenient interpretation of σi.

Corollary 3. The number σi is the largest value of λ for which the following holds: for any
i-dimensional subspace V of Cn, there exists v ∈ V nonzero such that |Av| ≤ λ|v|.

Proof. Theorem 1 provides an orthonormal basis v1, . . . , vn of V such that Av1, . . . , Avn is
again orthogonal, and |Avi| = σi|vi| for i = 1, . . . , n. Let W be the span of vi, . . . , vn; then
for any i-dimensional subspace V of Cn, V ∩ W is nonempty, and any v ∈ V ∩ W satisfies
|Av| ≤ σi|v|. On the other hand, if we take V to be the span of v1, . . . , vi, then we have
|Av| ≥ σi|v| for all v ∈ V . This proves the claim.

The relationship between the singular values and the eigenvalues is controlled by the
following inequality of Weyl [Wey49]. For a vast generalization, see Theorem 26.

Theorem 4 (Weyl). We have

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n.
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Proof. The equality for i = n holds because det(A∗A) = | det(A)|2. We check the inequality
first for i = 1. Note that if we equip Cn with the L2 norm, i.e.,

|(z1, . . . , zn)| = (|z1|
2 + · · ·+ |zn|

2)1/2,

then σ1 is the operator norm of A, that is,

σ1 = sup
v∈Cn−{0}

{|Av|/|v|}.

Since there exists v ∈ Cn − {0} with Av = λ1v, we deduce that σ1 ≥ |λ1|.
For the general case, we pass from Cn to its i-th exterior power ∧iCn, on which A also

acts. The maximum norm of an eigenvalue of this action is |λ1 · · ·λi|, and the operator norm
is σ1 · · ·σi. Thus the previous inequality gives what we want.

We mention in passing the following converse of Theorem 4, due to Horn [Hor54, Theo-
rem 4].

Theorem 5. For λ1, . . . , λn ∈ C and σ1, . . . , σn ∈ R≥0 satisfying

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n, there exist an n× n matrix A over C with singular values σ1, . . . , σn

and eigenvalues λ1, . . . , λn.

Equality in Weyl’s theorem at an intermediate stage has a structural meaning.

Theorem 6. Suppose that for some i ∈ {1, . . . , n − 1} we have

σi > σi+1, |λi| > |λi+1|,

σ1 · · ·σi = |λ1 · · ·λi|.

Then there exists a unitary matrix U such that U−1AU is block diagonal, with the first block
accounting for the first i singular values and eigenvalues, and the second block accounting
for the others.

Proof. Let v1, . . . , vn be a basis of Cn such that v1, . . . , vi span the generalized eigenspaces
with eigenvalues λ1, . . . , λi. and vi+1, . . . , vn span the generalized eigenspaces with eigenvales
λi+1, . . . , λn. Apply the singular value decomposition to construct an orthonormal basis
w1, . . . , wn such that Aw1, . . . , Awn are also orthogonal and |Awi| = σi|wi|.

Since σi > σi+1, the only vectors v ∈ ∧iCn for which |Av|/|v| achieves its maximum value
σ1 · · ·σi are the nonzero multiples of w1 ∧ · · ·∧wi. However, this is also true for v1 ∧ · · ·∧ vi.
We conclude that w1, . . . , wi span V ; this implies that the orthogonal complement of V is
spanned by wi+1, . . . , wn, and so is also preserved by A. This yields the desired result.

Theorem 7. The following are equivalent.
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(a) There exists a unitary matrix U such that U−1AU is diagonal.

(b) The matrix A is normal, i.e., A∗A = AA∗.

(c) The eigenvalues λ1, . . . , λn and singular values σ1, . . . , σn of A satisfy |λi| = σi for
i = 1, . . . , n.

Proof. It is clear that (a) implies both (b) and (c). Given (b), we can perform a joint
eigenspace decomposition for A and A∗. On any common generalized eigenspace, A has
some eigenvalue λ, A∗ has eigenvalue λ, and so A∗A has eigenvalue |λ|2. This implies (c).

Given (c), Theorem 6 implies that A can be conjugated by a unitary matrix into a block
diagonal matrix in which each block has a single eigenvalue and a single singular value, which
coincide. Let B be such a block, with eigenvalue λ, corresponding to a subspace V of Cn. If
the common singular value is 0, then B = 0. Otherwise, λ 6= 0 and λ−1 is unitary. Hence
given orthogonal eigenvectors v1, . . . , vi ∈ V of B, the orthogonal complement in V of their
span is preserved by B, so is either zero or contains another eigenvector vi+1. This shows
that B is diagonalizable, and thus is itself a scalar matrix. (One can also argue this last step
using compactness of the unitary group.)

In general, we can almost conjugate any matrix into a normal matrix.

Lemma 8. For any η > 1, we can choose U ∈ GLn(C) such that for i = 1, . . . , n, the i-th
singular value of U−1AU is at most η|λi|. If A is semisimple, we can also take η = 1.

Proof. Put A in Jordan normal form, then rescale so that for each eigenvalue λ, the super-
diagonal terms have absolute value at most (|η| − 1)|λ|, and all other terms are zero.

2 Perturbations (archimedean case)

Another inequality of Weyl [Wey12] shows that the singular values do not change much
under a small (additive) perturbation.

Theorem 9 (Weyl). Let B be an n × n matrix, and let σ′
1, . . . , σ

′
n be the singular values of

A + B. Then
|σ′

i − σi| ≤ |B| (i = 1, . . . , n).

It is more complicated to describe what happens to the eigenvalues under a small addi-
tive perturbation, but it is not so difficult to quantify what happens to the characteristic
polynomial, at least in a crude fashion.

Theorem 10. Let B be an n × n matrix such that |B| < σj for some j ∈ {1, . . . , n}. Let
P (T ) = T n +

∑n−1

i=0
PiT

i and Q(T ) = T n +
∑n−1

i=0
QiT

i be the characteristic polynomials of
A and A + B. Then

|Pn−i − Qn−i| ≤

∣

∣

∣

∣

2i

(

n

i

)∣

∣

∣

∣

σ1 · · ·σi−1|B| (i = 1, . . . , j).

3



The superfluous enclosure of the integer 2n
(

n
i

)

in absolute value signs is quite deliberate;
it will be relevant in the nonarchimedean setting.

Proof. First consider the case i = j = n. By continuity, we may assume that det(A) 6= 0.
Write

det(A + B) = det(A) det(In + A−1B)

= det(A)(1 − Rn−1 + · · · ± R0),

where T n +
∑n−1

i=0
RiT

i is the characteristic polynomial of A−1B. From the expansion of
Rn−i as a sum of

(

n
i

)

minors of size i, we have |Rn−i| <
(

n
i

)

|A−1B|i. Since |A−1| = σ−1
n , we

have |A−1B| < 1; we may thus write

| det(A + B) − det(A)| ≤ |2n|| det(A)||A−1B| = |2n|σ1 · · ·σn−1|B|.

For the general case, write the coefficient of T n−i in the characteristic polynomial of a matrix
as the sum of

(

n
i

)

minors of size i, then apply the previous case to each of these.

We also need to consider multiplicative perturbations.

Proposition 11. Let B ∈ GLn(C) satisfy |B| ≤ η. Let σ′
1, . . . , σ

′
n be the singular values of

AB. Then
σ′

i ≤ ησi (i = 1, . . . , n).

(The analogous result holds with BA replaced by AB, since transposal does not change sin-
gular values.)

Proof. We use the interpretation of singular values given by Corollary 3. Choose an i-
dimensional subspace V of Cn such that |BAv| ≥ σ′

i|v| for all v ∈ V . Then choose v ∈ V
nonzero such that |Av| ≤ σi|v|. We have

σ′
i|v| ≤ |BAv| ≤ |B||Av| ≤ σi|B||v|,

proving the claim.

Proposition 12. Let σk,1, . . . , σk,n be the singular values of Ak. Then

lim
k→∞

σ
1/k
k,i = |λi| (i = 1, . . . , n).

Proof. Pick η > 1, and choose U as in Lemma 8; that is, U is upper-triangular, and each
block of eigenvalue λ has some scalar c of norm at most (|η| − 1)|λ|. Let U be the matrix
effecting the resulting conjugation.

In a block with eigenvalue λ, the singular values of the k-th power are bounded below by
|λ|k and above by ηk|λ|k. Consequently, we may apply Proposition 11 to deduce that

|λi|
k|U ||U−1| ≤ σk,i ≤ ηk|λi|

k|U ||U−1|.

Taking k-th roots and then taking k → ∞, we deduce

|λi| ≤ lim inf
k→∞

σ
1/k
k,i , lim sup

k→∞
σ

1/k
k,i ≤ η|λi|.

Since η > 1 was arbitrary, we deduce the desired result.
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3 Hodge and Newton polygons

We now pass to nonarchimedean analogues. For the rest of this unit, let F be a nonar-
chimedean field, and let A be an n × n matrix over F .

The Hodge polygon of A is the polygon starting from (−n, 0) whose slopes s1, . . . , sn have
the property that for i = 1, . . . , n, s1 + · · · + si is the minimum valuation of an i × i minor
of A. These slopes may be more familiar as the elementary divisors of A; see the notes for
an explanation of the term “Hodge polygon”. They are also sometimes called the invariant
factors of A.

We will refer to σ1, . . . , σn = e−s1, . . . , e−sn as the singular values of A; these are invariant
under multiplication on either side by a matrix in GLn(oF ). One has the relation

σ1 = |A|,

but this time taking the operator norm defined by the supremum norm on F n.
We also have an analogue of the singular value decomposition, but only when F is

spherically complete.

Theorem 13 (Smith normal form). There exist U, V ∈ GLn(oF ) such that UAV is a diag-
onal matrix whose entries have norms σ1, . . . , σn.

Proof. Exercise.

Corollary 14. The slopes s1, . . . , sn of the Hodge polygon satisfy s1 ≤ · · · ≤ sn.

Proof. We may replace F by its spherical completion, and then the i-th slope si is evidently
the i-th smallest valuation of a diagonal entry of the Smith normal form.

Corollary 15. The number σi is the largest value of λ for which the following holds: for
any i-dimensional subspace V of F n, there exists v ∈ V nonzero such that |Av| ≤ λ|v|.

The Newton polygon of A is simply the Newton polygon of its characteristic polynomial.
That is, for λ1, . . . , λn the eigenvalues of A in some algebraic extension of F , sorted with
|λ1| ≥ · · · ≥ |λn|, the Newton polygon has slopes − log |λ|1, . . . ,− log |λn| in that order.
Since the characteristic polynomial is invariant under conjugation by an element of GLn(F ),
so is the Newton polygon.

The archimedean analogue of Weyl’s inequality is the following.

Theorem 16 (Newton above Hodge). We have

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n. In other words, the Hodge and Newton polygons have the same
endpoints, and the Newton polygon is everywhere on or above the Hodge polygon.

Proof. Again, the case i = 1 is clear because σ1 is the operator norm of A, and the general
case follows by considering exterior powers.
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Again, equality has a structural meaning, but the proof requires a bit more work than in
the archimedean case, since we no longer have access to orthogonality.

Theorem 17 (Hodge-Newton decomposition). Suppose that for some i ∈ {1, . . . , n− 1} we
have

σi > σi+1, |λi| > |λi+1|,

σ1 · · ·σi = |λ1 · · ·λi|.

(That is, the Hodge and Newton polygons share a vertex with x-coordinate −n + i.) Then
there exists U ∈ GLn(oF ) such that U−1AU is block diagonal, with the first block accounting
for the first i singular values and eigenvalues, and the second block accounting for the others.

Proof. Let v1, . . . , vn be a basis of F n such that v1, . . . , vi span the generalized eigenspaces
with eigenvalues λ1, . . . , λi. and vi+1, . . . , vn span the generalized eigenspaces with eigenvales
λi+1, . . . , λn. Apply the Smith normal form to construct a basis w1, . . . , wn of o

n
K such that

|Awi| = σi|wi|.
Since σi > σi+1, the only vectors v ∈ ∧iCn for which |Av|/|v| achieves its maximum value

σ1 · · ·σi are the nonzero multiples of w1 ∧ · · ·∧wi. However, this is also true for v1 ∧ · · ·∧ vi.
We conclude that w1, . . . , wi span V ; this implies that we can conjugate A by a matrix in
GLn(oF ) into block diagonal form

(

B C
0 D

)

,

where B accounts for the first i Hodge and Newton slopes of A.
Each i × i minor of the matrix (BC) has valuation at least the sum of the first i Hodge

slopes of A, which is the valuation of det(B). By Cramer’s rule, each column of C is a
oF -linear combination of the columns of B, i.e., B−1C has entries in oF . Moreover, the
first Hodge slope of D is greater than the last Hodge slope of B, so |B−1CD| < |C|. Thus
conjugating by the matrix

(

Ii −B−1C
0 1

)

gives a new matrix
(

B C1

0 D

)

with |C1| < C. Repeating, we converge to a change of basis which converts A into the block
diagonal matrix

(

B 0
0 D

)

which has the desired form.

Note that the slopes of the Hodge polygon are forced to be in the (additive) value group
of F , whereas the slopes of the Newton polygon need only lie in the divisible closure of the
value group. Consequently, it is possible for a matrix to have no conjugates over GLn(F )
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for which the Hodge and Newton polygons coincide. However, the following is true; see also
Proposition 24 below.

Lemma 18. Suppose that one of the following holds.

(a) The value group of |F ∗| is dense in R>0, and η > 1.

(b) We have σi ∈ |F ∗| for i = 1, . . . , n (so in particular σi > 0), and η ≥ 1.
Then there exists U ∈ GLn(F ) such that the i-th singular value of U−1AU is at most

η|λi| (with equality in case (b)).

Proof. Case (b) is directly analogous of Lemma 8. We will prove a stronger form of (a) in a
later unit.

4 Perturbations (nonarchimedean case)

Again, we can ask about the effect of perturbations. The analogue of Weyl’s second inequality
is more or less trivial.

Proposition 19. If B is a matrix with |B| < σi, then the first i singular values of A + B
are σ1, . . . , σi.

Proof. Exercise.

We next consider the effect on the characteristic polynomial.

Theorem 20. Let B be an n × n matrix such that |B| < σj for some j ∈ {1, . . . , n}. Let
P (T ) = T n +

∑n−1

i=0
PiT

i and Q(T ) = T n +
∑n−1

i=0
QiT

i be the characteristic polynomials of
A and A + B. Then

|Pn−i − Qn−i| ≤ σ1 · · ·σi−1|B| (i = 1, . . . , j).

Proof. The proof is as for Theorem 10, except now the factor |2n
(

n
i

)2
| is dominated by 1.

Question 21. Is Theorem 20 best possible?

We may also consider multiplicative perturbations.

Proposition 22. Let B ∈ GLn(F ) satisfy |B| ≤ η. Let σ′
1, . . . , σ

′
n be the singular values of

AB. Then
σ′

i ≤ ησi (i = 1, . . . , n).

Proof. As for Proposition 11, but using the Smith normal form instead of the singular value
decomposition.

Corollary 23. Suppose that the Newton and Hodge slopes of A coincide, and that U ∈
GLn(F ) satisfies |U | · |U−1| ≤ η. Then each Newton slope of U−1AU is at most log η more
than the corresponding Hodge slope.
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Here is a weak converse to Corollary 23. (We leave the archimedean analogue to the
reader’s imagination.)

Proposition 24. Suppose that the Newton slopes of A are nonnegative and that σ1 ≥ 1.
Then there exists U ∈ GLn(F ) such that

|U−1AU | ≤ 1, |U−1| ≤ 1, |U | ≤ σn−1

1 .

Proof. Let e1, . . . , en denote the standard basis vectors. Let M be the smallest oF -submodule
of F n containing e1, . . . , en and stable under A. For each i, if j = j(i) is the least integer
such that ei, Aei, . . . , A

jei are linearly dependent, then we have Ajei =
∑j−1

h=0
chA

hei for some
ch ∈ F , and the nonnegativity of the Newton slopes forces |ch| ≤ 1. Hence M is finitely
generated, and thus free, over oF .

Let v1, . . . , vn be a basis of M , and let U be the change-of-basis matrix vj =
∑

i Uijei; then
|U−1AU | ≤ 1 because M is stable under A, and |U−1| ≤ 1 because M contains e1, . . . , en.
The desired bound on U will follow from the fact that for any x = c1e1 + · · · + cnen ∈ M ,
we have

max
i

{|ci|} ≤ σn−1

1 . (1)

It suffices to check (1) for x = Ahei for i = 1, . . . , n and h = 0, . . . , j(i)−1, as these generate
M over oF . But it is evident that |Ahe1| ≤ σh

1 |e1| = σh
1 , so we are done.

In one sense, examples like

A =





1 c 0
0 1 c
0 0 1





with |c| > 1 show that this bound is sharp. However, one can get a slight improvement in
special cases by accounting for the other singular values; see exercises.

By imitating the proof of Proposition 12, we obtain the following.

Proposition 25. Let σk,1, . . . , σk,n be the singular values of Ak. Then

lim
k→∞

σ
1/k
k,i = |λi| (i = 1, . . . , n).

5 Horn’s inequalities

Although they will not be needed in this course, it is quite natural to mention here some
stronger versions of the perturbation inequalities in the archimedean and nonarchimedean
cases, introduced by Horn [Hor62] in the archimedean case. See the beautiful survey article
of Fulton [Ful00] for more information.

To introduce the stronger inequalities, we must set up some notation. Put

Un
r = {(I, J, K) : I, J, K ⊆ {1, . . . , n}, #I = #J = #K = r,

∑

i∈I

i +
∑

j∈J

j =
∑

k∈K

k + r(r + 1)/2}.
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For (I, J, K) ∈ Un
r , write I = {i1 < · · · < ir} and similarly for J, K. For r = 1, put T n

1 = Un
1 .

For r > 1, put

T n
r = {(I, J, K) ∈ Un

r : for all p < r and (F, G, H) ∈ T r
p ,

∑

f∈F

if +
∑

g∈G

jg ≤
∑

h∈H

kh + p(p + 1)/2}.

For multiplicative perturbations, we obtain the following results. which include the Weyl
inequalities (Theorem 4, Theorem 16) as well as Propositions 11 and 22. (It is important
for the proofs that one can rephrase the Horn inequalities in terms of Littlewood-Richardson
numbers; see [Ful00, §3].)

Theorem 26. For ∗ ∈ {A, B, C}, let σ∗,1, . . . , σ∗,n be a nonincreasing sequence of nonnega-
tive real numbers. Then the following are equivalent.

(a) There exist n × n matrices A, B, C over C with AB = C such that for ∗ ∈ {A, B, C},
∗ has singular values σ∗,1, . . . , σ∗,n.

(b) We have
∏n

i=1
σA,i

∏n
j=1

σB,j =
∏n

k=1
σC,k, and for all r < n and (I, J, K) ∈ T n

r , we
have

∏

k∈K

σC,k ≤
∏

i∈I

σA,i

∏

j∈J

σB,j .

Proof. See [Ful00, Theorem 16]. Note that the first condition in (b) is omitted in the
statement given in [Ful00], but this is only a typo.

Theorem 27. Let F be a complete nonarchimedean field with additive value group G. For
∗ ∈ {A, B, C}, let σ∗,1, . . . , σ∗,n be a nonincreasing sequence of elements of G ∪ {0}. Then
the following are equivalent.

(a) There exist n × n matrices A, B, C over F with AB = C such that for ∗ ∈ {A, B, C},
∗ has singular values σ∗,1, . . . , σ∗,n.

(b) We have
∏n

i=1
σA,i

∏n
j=1

σB,j =
∏n

k=1
σC,k, and for all r < n and (I, J, K) ∈ T n

r , we
have

∏

k∈K

σC,k ≤
∏

i∈I

σA,i

∏

j∈J

σB,j .

Proof. See [Ful00, Theorem 7].

For additive perturbations, one has an analogous result in the archimedean case; see
[Ful00, Theorem 15]. I am not aware of an additive result in the nonarchimedean case. Also,
in the archimedean case one has analogous results (with slightly different statements) in
which one restricts to Hermitian matrices.
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6 Notes

See [Bha97, §III] for results in the archimedean case not otherwise cited, such as the fact that
a real symmetric matrix has nonnegative real eigenvalues, and the singular value decomposi-
tion. (This book was out of the library when I wrote this, so I wasn’t able to look up precise
references.) We unfortunately cannot recommend a good reference for the strong analogy
between archimedean and p-adic numerical analysis; this seems to be a poorly known piece
of folklore.

In Theorem 7, the equivalence of (a) and (b) is standard. We do not have a reference for
the equivalence with (c), although it is implicit in most proofs of the equivalence of (a) and
(b).

The reader familiar with the notions of elementary divisors or invariant factors may be
wondering why the terminology “Hodge polygon” is necessary or reasonable. The answer
is that the Hodge numbers of a variety over a p-adic field are reflected by the elementary
divisors of the action of Frobenius on crystalline cohomology. The fact that the Newton
polygon lies above the Hodge polygon then implies a relation between the characteristic
polynomial of Frobenius and the Hodge numbers of the original variety; this relationship
was originally conjectured by Katz and proved by Mazur. See [BO78] for further discussion
of this point, and of crystalline cohomology as a whole.

Much of the work in this chapter can be carried over to the case of a transformation
which is only semilinear for some isometric endomorphism of F . This case arises in the
study of slope filtrations of Frobenius crystals (F -crystals), as in [Kat79]; in fact, the Hodge-
Newton decomposition theorem (Theorem 17) is a direct translation of Katz’s corresponding
theorem for F -crystals [Kat79, Theorem 1.6.1]. The archimedean version (Theorem 6) is
itself a translation of Theorem 17; we do not know of a reference, although we do not make
any claim of originality. Likewise, Proposition 25 is a direct translation of [Kat79, Corollary
1.4.4]; its archimedean analogue (Proposition 12) is doubtless also known, but we do not
have a reference.

The question of how much the characteristic polynomial of a square matrix over a field
is affected by a perturbation arises in numerical applications. This is a familiar fact in the
archimedean case, but perhaps less so in the nonarchimedean case; numerical applications of
the latter include using p-adic cohomology to compute zeta functions of varieties over finite
fields. See for instance [AKR07, §1.6], [Ger07, §3].

7 Exercises

1. Prove Theorem 13. (Hint: first do row reduction to get an upper triangular matrix
whose diagonal entries have norms equal to the singular values.)

2. Prove the following nonarchimedean analogue of Horn’s theorem (Theorem 5): any
λ1, . . . , λn ∈ F and σ1, . . . , σn ∈ 0 ∪ G (where G is the additive value group of F )
satisfying Weyl’s inequalities (including the equality for i = n) occur as the eigenvalues
and singular values of an n × n matrix over F .

10



3. Prove Proposition 19.

4. Let D ∈ GLn(F ) be a diagonal matrix, and let U, V ∈ GLn(oF ) be congruent to the
identity matrix modulo mF . Prove that the Newton polygons of D and UDV coincide.
This is [BC05, Lemma 5]. Optional: is there an archimedean analogue?

5. Improve the upper bound in (1), and consequently in Proposition 24, to
∏n−1

i=1
max{1, σi}.

(Hint: reduce to the case where A admits a cyclic vector.) Optional: is there an
archimedean analogue?
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