
CHAPTER 21

p-adic Hodge theory

In this chapter, we describe an analogue of the construction of Chapter 17 for p-adic
representations of the absolute Galois group of a mixed characteristic local field. Beware
that our presentation is historically inaccurate; see the notes.

Hypothesis 21.0.1. Throughout this chapter, let K be a finite extension of Qp, let V be a
finite dimensional Qp-vector space, and let τ : GK → GL(V ) be a continuous homomorphism
for the p-adic topology on V .

1. A few rings

Definition 21.1.1. Put Kn = K(ζpn) and K∞ = ∪nKn. Let F = FracW (κK) and F ′

be the maximal subfields of K and K∞, respectively, which are unramified over Qp. Put
HK = GK∞

and ΓK = GK∞/K = GK/HK .

Definition 21.1.2. Put o = oCp
. Let Ẽ+ be the inverse limit of the system

· · · → o/po → o/po

in which each map is the p-power Frobenius (which is a ring homomorphism). More explicitly,

the elements of Ẽ+ are sequences (x0, x1, . . . ) of elements of o/po for which xp
n+1 = xn for

all n. In particular, for any nonzero x ∈ Ẽ+, the quantity pnvp(xn) is the same for all n
for which xn 6= 0; we call this quantity v(x), and put conventionally v(0) = +∞. Choose
ǫ = (ǫ0, ǫ1, . . . ) ∈ Ẽ+ with ǫ0 = 1 and ǫ1 6= 1.

The following observations were made by Fontaine and Wintenberger [FW79].

Proposition 21.1.3. The following are true.

(a) The ring Ẽ+ is a domain in which p = 0, with fraction field Ẽ = Ẽ+[ǫ−1].

(b) The function v : Ẽ+ → [0, +∞] extends to a valuation on Ẽ, under which Ẽ is

complete and o
Ẽ

= Ẽ+.

(c) The field Ẽ is the algebraic closure of κK((ǫ − 1)). (The embedding of κK((ǫ − 1))

into Ẽ exists because v(ǫ − 1) = p/(p − 1) > 0.)

Definition 21.1.4. Let Ã be the ring of Witt vectors of Ẽ, i.e., the unique complete
discrete valuation ring with maximal ideal p and residue field Ẽ. The uniqueness follows from
the fact that Ẽ is algebraically closed, hence perfect. In particular, the p-power Frobenius
on Ẽ lifts to an automorphism φ of Ã.

Definition 21.1.5. Each element of Ã can be uniquely written as a sum
∑∞

n=0 pn[xn],

where xn ∈ Ẽ and [xn] denotes the Teichmüller lift of xn (the unique lift of xn that has a

pm-th root in Ã for all positive integers m); note that φ([x]) = [xp] = [x]p. We may thus
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equip Ã with a weak topology, in which a sequence xm =
∑∞

n=0 pn[xm,n] converges to zero if

for each n, v(xm,n) → ∞ as m → ∞. Let AQp
be the completion of Zp[([ǫ] − 1)±] in Ã for

the weak topology; as a topological ring, it is isomorphic to the ring oE defined over the base
field Qp with its own weak topology. It is also φ-stable because φ([ǫ]) = [ǫ]p.

Definition 21.1.6. Let A be the completion of the maximal unramified extension of
AQp

, viewed as a subring of Ã. Put

AK = (A ∩ B̃)HK ,

where the right side makes sense because we have made all the rings so far in a functorial
fashion, so that they indeed carry a GK-action. Note that AK can be written as a ring of
the form oE , but with coefficients in K ′ rather than in Qp.

Definition 21.1.7. For any ring denoted with a boldface A so far, define the correspond-
ing ring with A replaced by B by tensoring over Zp with Qp. For instance, B̃ = Ã ⊗Zp

Qp

is the fraction field of Ã.

2. (φ, Γ)-modules

We are now ready to describe the mechanism, introduced by Fontaine, for converting
Galois representations into modules over various rings equipped with much simpler group
actions.

Definition 21.2.1. Recall that V is a finite-dimensional vector space equipped with a
continuous GK-action. Put

D(V ) = (V ⊗Qp
B)HK ;

by Hilbert’s Theorem 90, D(V ) is a finite dimensional BK-vector space, and the natural
map D(V ) ⊗BK

B → V ⊗Qp
B is an isomorphism. Since we only took HK-invariants, D(V )

retains a semilinear action of GK/HK = ΓK ; it also inherits an action of φ from B. That is,
D(V ) is a (φ, Γ)-module over BK , i.e., a finite free BK-module equipped with semilinear φ
and ΓK-actions which commute with each other. It is also étale, which is to say the φ-action
is étale (unit-root); as in Definition 17.2.5, this is because one can find a GK-invariant lattice
in V .

Theorem 21.2.2 (Fontaine). The functor D, from the category of continuous represen-
tations of GK on finite dimensional Qp-vector spaces to the category of étale (φ, Γ)-modules
over BK, is an equivalence of categories.

Proof. From D(V ), one can recover

V = (D(V ) ⊗BK
B)φ=1.

�

Theorem 21.2.2 was refined by Cherbonnier and Colmez as follows [CC98].

Definition 21.2.3. Let B
†
Qp

be the image of E † under the identification of E (with

coefficients in Qp) with BQp
sending t to [ǫ] − 1. Let B

†
K be the integral closure of B

†
Qp

in

BK . Again, B
†
K carries actions of φ and ΓK .
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Definition 21.2.4. Let A† be the set of x =
∑∞

n=0 pn[xn] ∈ Ã such that lim infn→∞{v(xn)/n} >
−∞. Define

D†(V ) = (V ⊗Qp
B†)HK ;

it is an étale (φ, Γ)-module over B
†
K .

The following is the main result of [CC98].

Theorem 21.2.5 (Cherbonnier-Colmez). The functor D†, from the category of contin-
uous representations of GK on finite dimensional Qp-vector spaces to the category of étale

(φ, Γ)-modules over B
†
K, is an equivalence of categories.

Remark 21.2.6. By Theorem 21.2.2, it suffices to check that the base extension functor
from étale (φ, Γ)-modules over B

†
K to étale (φ, Γ)-modules over BK is an equivalence. The

full faithfulness of this functor is elementary; it follows from Lemma 18.4.6. The essential
surjectivity is much deeper; it amounts to the fact that the natural map

D†(V ) ⊗
B

†
K

B† → V ⊗Qp
B†

is an isomorphism. Verifying this requires developing an appropriate analogy to Sen’s theory
of decompletion; this analogy has been developed into a full abstract Sen theory by Berger
and Colmez [BC07].

A further variant was proposed by Berger [Brg02].

Definition 21.2.7. Using the identification B
†
Qp

∼= E†, put

B
†
rig,K = B

†
K ⊗

B
†
Qp

R.

Note that B
†
rig,K admits continuous extensions (for the LF-topology) of the actions of φ and

ΓK . Define
D†

rig(V ) = D†(V ) ⊗
B

†
K

B
†
rig,K ;

it is an étale (φ, Γ)-module over B
†
rig,K .

Theorem 21.2.8 (Berger). The functor D†
rig, from the category of continuous represen-

tations of GK on finite dimensional Qp-vector spaces to the category of étale (φ, Γ)-modules

over B
†
rig,K, is an equivalence of categories.

Remark 21.2.9. The principal content in Theorem 21.2.8 is that the base extension
functor from étale φ-modules over E † to étale φ-modules over R is fully faithful; this is
elementary (see exercises). The essential surjectivity of the functor is almost trivial, since
étaleness of the φ-action is defined over the Robba ring by base extension from E †. One
needs only check that the ΓK-action also descends to any étale lattice, but this is easy (it is
similar to Lemma 18.4.4).

3. Galois cohomology

Since the functor D and its variants lose no information about Galois representations, it
is unsurprising that they can be used to recover basic invariants of a representation, such as
Galois cohomology.
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Definition 21.3.1. Assume for simplicity that ΓK is procyclic; this only eliminates the
case where p = 2 and {±1} ⊂ Γ, for which see Remark 21.3.2 below. Let γ be a topological
generator of Γ. Define the Herr complex over BK associated to V as the complex (with the
first nonzero term placed in degree zero)

0 → D(V ) → D(V ) ⊕ D(V ) → D(V ) → 0

with the first map being m 7→ ((φ − 1)m, (γ − 1)m) and the second map being (m1, m2) →
(γ − 1)m1 − (φ − 1)m2. (The fact that this is a complex follows from the commutativity

between φ and γ.) Similarly, define the Herr complex over B
†
K or B

†
rig,K by replacing D(V )

by D†(V ) or D†
rig(V ), respectively.

Remark 21.3.2. A more conceptual description, which also covers the case where ΓK

need not be profinite, is that one takes the total complex associated to

0 → C ·(ΓK , D(V ))
φ−1
→ C ·(ΓK , D(V )) → 0.

One might think of this as the “monoid cohomology” of ΓK × φZ≥0 acting on D(V ).

Theorem 21.3.3. The cohomology of the Herr complex computes the Galois cohomology
of V .

Proof. For BK , the desired result was established by Herr [Her98]. The argument
proceeds in two steps. One first takes cohomology of the Artin-Schreier sequence

0 → Qp → B
φ−1
→ B → 0

after tensoring with V . This reduces the claim to the fact that the inflation homomorphisms

H i(ΓK , D(V )) → H i(GK , V ⊗Qp
B)

are bijections; this is proved by adapting a technique introduced by Sen.
For B

†
K and B

†
rig,K , the desired result was established by Liu [Liu07]; this proceeds by

comparison with the original Herr complex rather than by imitating the above argument,
though one could probably do that also. �

Remark 21.3.4. As is done in [Her98, Liu07], one can make Theorem 21.3.3 more
precise. For instance, the construction of Galois cohomology is functorial; there is also an
interpretation in the Herr complex of the cup product in cohomology.

Remark 21.3.5. One can also use the Herr complex to recover Tate’s fundamental theo-
rems about Galois cohomology (finite dimensionality, Euler-Poincaré characteristic formula,
local duality). This was done by Herr in [Her01].

4. Differential equations from (φ, Γ)-modules

One of the original goals of p-adic Hodge theory was to associate finer invariants to p-adic
Galois representations, so as for instance to distinguish those representations which arose
in geometry (i.e., from the étale cohomology of varieties over K). This was originally done
using a collection of “period rings” introduced by Fontaine; more recently, Berger’s work has
demonstrated that one can reproduce these constructions using (φ, Γ)-modules. Here is a
brief description of an example that shows the relevance of p-adic differential equations to
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this study. We will make reference to Fontaine’s rings BdR,Bst without definition, for which
see [Brg04].

Definition 21.4.1. Let χ : ΓK → Z×
p denote the cyclotomic character; that is, for all

nonnegative integers m and all γ ∈ ΓK ,

γ(ζpm) = ζ
χ(γ)
pm .

For γ ∈ ΓK sufficiently close to 1, we may compute

∇ =
log(γ)

log χ(γ)

as an endomorphism of D(V ), using the power series for log(1 + x). The result does not
depend on γ.

Remark 21.4.2. If one views ΓK as a one-dimensional p-adic Lie group over Zp, then ∇
is the action of the corresponding Lie algebra.

Definition 21.4.3. Note that ∇ acts on B
†
rig,K with respect to

f 7→ [ǫ] log[ǫ]
df

d[ǫ]
.

As a result, it does not induce a differential module structure with respect to d
dt

on D(V ),

but only on D(V )⊗B
†
rig,K [(log[ǫ])−1]. We say that V is de Rham if there exists a differential

module with Frobenius structure M over B
†
rig,K and an isomorphism

D(V ) ⊗B
†
rig,K [(log[ǫ])−1] → M ⊗ B

†
rig,K [(log[ǫ])−1]

of differential modules with Frobenius structure.

One then has the following results of Berger [Brg02].

Theorem 21.4.4 (Berger). (a) The representation V is de Rham if and only if it is
de Rham in Fontaine’s sense, i.e., if

DdR(V ) = (V ⊗Qp
BdR)GK

satisfies
DdR(V ) ⊗K BdR

∼= V ⊗Qp
BdR.

(b) Suppose that V is de Rham. Then V is semistable in Fontaine’s sense, i.e.,

Dst(V ) = (V ⊗Qp
Bst)

GK

satisfies
Dst(V ) ⊗F Bst

∼= V ⊗Qp
Bst,

if and only if there exists M as in Definition 21.4.3 which is unipotent.

Applying Theorem 18.1.8 then yields the following corollary, which was previously a
conjecture of Fontaine [Fon94, 6.2].

Corollary 21.4.5 (Berger). Every de Rham representation is potentially semistable,
i.e., becomes semistable upon restriction to GL for some finite extension L of K.
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Remark 21.4.6. The term “de Rham” is meant to convey the fact that if V = H i
et(X×K

Kalg, Qp) for X a smooth proper variety over K, then V is de Rham and you can use the afore-
mentioned constructions to recover H i

dR(X, K) functorially from V (solving Grothendieck’s
“problem of the mysterious functor”). See [Brg04] for more of the story.

5. Beyond Galois representations

The category of arbitrary (φ, Γ)-modules over B
†
rig,K turns out to have its own representation-

theoretic interpretation; it is equivalent to the category of B-pairs introduced by Berger
[Brg07a]. One can associate “Galois cohomology” to such objects using the Herr complex;
it has been shown by Liu [Liu07] that the analogues of Tate’s theorems (see Remark 21.3.5)

still hold. These functors can be interpreted as the derived functors of Hom(D†
rig(V0), ·) for

V0 the trivial representation [Ked07f, Appendix].

One may wonder why one should be interested in (φ, Γ)-modules over B
†
rig,K if ultimately

one has in mind an application concerning only Galois representations. One answer is that
converting Galois representations into (φ, Γ)-modules exposes extra structure that is not
visible without the conversion.

Definition 21.5.1 (Colmez). We say V is trianguline if D†
rig(V ) is a successive extension

of (φ, Γ)-modules of rank 1 over B
†
rig,K . The point is that these need not be étale, so V need

not be a successive extension of representations of dimension 1.

The trianguline representations have the dual benefits of being relatively easy to classify,
and somewhat commonplace. On one hand, Colmez [Col07] classified the two-dimensional
trianguline representations of GQp

; the classification includes a parameter (the L-invariant)
relevant to p-adic L-functions. On the other hand, a result of Kisin [Kis03] shows that the
Galois representations associated to many classical modular forms are trianguline.

Notes

Our presentation here is largely a summary of Berger’s [Brg04], which we highly recom-
mend.

A variant of the theory of (φ, Γ)-modules was introduced by Kisin [Kis06], using the
Kummer tower K(p1/pn

) instead of the cyclotomic tower K(ζpn). This leads to certain
advantages, particularly when studying crystalline representations. Kisin’s work is based on
an earlier paper of Berger [Brg07b]; both of these use slope filtrations (as in Theorem 18.4.1)
to recover a theorem of Colmez-Fontaine classifying semistable Galois representations in
terms of certain linear algebraic data.

After [Brg02] appeared, Fontaine succeeded in giving a direct proof of Corollary 21.4.5
(i.e., not going through p-adic differential equations). We do not have a reference for this.

Exercises

(1) (Compare [Tsu96, Proposition 2.2.2].) Let A be an n × n matrix over oE† , and
suppose v ∈ En, w ∈ (E †)n satisfy Av − φ(v) = w. Then v ∈ (E †)n. This gives a
direct proof of some cases of Theorem 18.5.1, in the spirit of Lemma 18.4.6. (Hint:
reduce to the case where |A|ρ ≤ 1 for some ρ ∈ (0, 1) for which |w|ρ < ∞. Then use
|w|ρ to bound the terms of v =

∑
i vit

i for which |vi| ≥ c.)
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