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18.787, Kiran S. Kedlaya, MIT, fall 2007

Quasiunipotent differential modules

In this unit, we construct a class of examples of differential modules on open annuli which
are solvable at a boundary. In the process, we illustrate a numerical relationship between
wild ramification in positive characteristic and convergence of solutions of p-adic differential
equations. We also state the p-adic local monodromy theorem, for differential modules with
Frobenius structure on an annulus, and prove the rank 1 case.

Throughout this unit, we assume that our complete nonarchimedean field carries a dis-
crete valuation (e.g., finite extensions of Qp are okay but not Cp). Getting rid of this
assumption throws in a number of subtleties which we will not address here.

Notation: for E/F a Galois extension of fields, write GE/F for Gal(E/F ). If E = F sep,
write GF instead, to mean the absolute Galois group.

Also, note that I haven’t added all references and details; I plan to put a bit more when
I fold this into the compiled notes. (That will be true for the remainder of the course.)

1 Some key rings

Recall that we defined the ring E as the completion of oK((t)) ⊗oK
K for the 1-Gauss norm
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Besides the p-adic topology, it is natural to consider also the weak topology on E , in which
a sequence converges to 0 if it does so in the t-adic topology on E/mm

KoE for each m ∈ Z.
Note that E is complete for both topologies.

Because K carries a discrete valuation, the supremum defining the Gauss norm of a
nonzero element x =

∑
xit

i ∈ E is achieved by some i. If j is the least such index, then the
sum

x−1
j t−j

∞∑

l=0

(1 − x−1
j t−jx)l

converges in the weak topology (but not in the p-adic topology!) to an inverse of x. That
is, E is a discrete complete nonarchimedean field with residue field κK((t)).

Put
E† =

⋃

α∈(0,1)

K〈α/t, tK0;

that is, E† consists of formal sums
∑

cit
i which have bounded coefficients and converge in

some range α ≤ |t| < 1.

Lemma 1. (a) The ring E † is a field.
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(b) Under the norm | · |1, the valuation ring oE† is a local ring with maximal ideal mKoE†.

(c) The pair (oE†, mKoE†) is henselian.

This last property implies that finite separable extensions of κE† = κK((t)) lift functorially
to finite étale extensions of oE† (and to unramified extensions of E †). In particular, the
maximal unramified extension E †,unr carries an action of GκK((t)).

Proof. The proof of (a) uses the same construction as for E , except that the series converges
under | · |α for some α < 1. From this, (b) is straightforward. The proof of (c) is to reduce to
working in some K〈α/t, tK0 and use the fact that the latter ring is complete for the Fréchet
topology generated by | · |α and | · |1.

2 Finite representations and differential modules

Let V be a finite dimensional vector space over K, and let τ : GκK((t)) → GL(V ) be a
continuous homomorphism for the discrete topology on GL(V ). That is, τ factors through
GL/κK((t))) for some finite separable extension L of κK((t)).

Let E†
L be the finite unramified extension of E † corresponding to L; then GκK((t)) acts on

E†
L with fixed field E †. (Minor weirdness: by the Cohen structure theorem, L can always be

written as a power series field λ((u)), and similarly for E †
L. But if L induces an inseparable

residue field extension, then you can’t ensure that κK can be contained in λ. I recommend
not worrying about this unless you really have to.)

Let us view V ⊗K E†
L as a GκK((t))-module with the action on the first factor coming from

τ and the action on the second factor as above. Put

D†(V ) = (V ⊗K E†
L)GκK((t)).

Lemma 2. The space D†(V ) is an E †-vector space of dimension dimK(V ).

Proof. This is a consequence of the nonabelian version of Hilbert’s Theorem 90: for any
finite Galois extension E/F of fields, the nonabelian cohomology set H1(GE/F , GLn(E)) is
trivial.

Note that d
dt

extends uniquely to E †
L, and hence to D†(V ) by taking the action on V to

be trivial. Since the action of d
dt

commutes with the Galois action, we also obtain an action
on D†(V ). That is, D†(V ) is a differential module over E †.

Note that there is a sense in which it makes sense to compute the subsidiary radii of
D†(V ) ⊗ Fρ for ρ ∈ (0, 1) sufficiently close to 1. Namely, realize D†(V ) as a differential
module over K〈α/t, tK0 for some α and compute there. Beware that any two such realizations
for a given α need only become isomorphic over K〈β/t, tK0 for some β ∈ [α, 1). However,
the following statement is unambiguous.

Proposition 3. The generic radius of convergence of D†(V )⊗E is equal to 1. Consequently
(by continuity of generic radius of convergence), D†(V ) is solvable at 1.
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Proof. This can be shown directly, but it also follows from the existence of a Frobenius
structure on D†(V ). Namely, fix any Frobenius lift φ on E †; then φ extends uniquely to E †

L.
Let φ act on V ⊗K E†

L using the trivial action on the first factor; this action commutes with
the Galois action, so we get a φ-action on D†(V ) compatible with the derivation.

Note that the Frobenius structure constructed in the previous proof is pure of slope 1 (i.e.,
is unit-root), because one can pick a Galois-stable lattice in V and do everything integrally.
This will allow us to form a converse assertion; see below.

3 Ramification and differential slopes

There is a close relationship between R(D†(V )⊗Fρ) and wild ramification of the representa-
tion V . To explain this, I need to recall a bit of classical ramification theory for local fields
(as in Serre’s Local Fields, Chapter IV).

Let F be a complete discrete nonarchimedean field whose residue field κF is perfect (this
hypothesis is crucial!). Let E be a finite Galois extension of F . The lower numbering
filtration of GE/F is defined as follows: for i ≥ −1 an integer.

GE/F,i = ker(GE/F → Aut(oF/mi+1
F )).

For i ≥ −1 real, we define GE/F,i = GE/F,⌈i⌉. The lower numbering filtration behaves nicely
with respect to subgroups of GE/F but not quotients; it thus cannot be defined on the
absolute Galois group GF .

The upper numbering filtration of GE/F is defined by the relation G
φE/F (i)

E/F = GE/F,i, where

φE/F (i) =

∫ i

0

[GE/F,0 : GE/F,t]
−1 dt.

Note that the indices where the filtration jumps are now rational numbers, but not necessarily
integers. In any case, one has the following.

Proposition 4 (Herbrand). Let E ′ be a Galois subextension of E/F , and put H = Gal(E/E ′),
so that H is normal in GE/F and GE/F/H = GE′/F . Then Gi

E′/F = (Gi
E/FH)/H; that is,

the upper numbering filtration is compatible with forming quotients of GE/F .

Consequently, we obtain a filtration Gi
F on GF which induces the upper numbering

filtration on each Gi
E/F .

If we take F = κK((t)), we then obtain the following. (The attribution is somewhat
complicated, involving Crew, Matsuda, Tsuzuki, Christol-Mebkhout, André, etc.; see the
compiled notes.)

Theorem 5. Assume that κK is perfect. Let V be a finite dimensional vector space over K,
and let τ : GκK((t)) → GL(V ) be a continuous homomorphism for the discrete topology on
GL(V ). Then for ρ ∈ (0, 1) sufficiently close to 1,

R(D†(V ) ⊗ Fρ) = ρb, b = max{i ≥ 1 : GκK((t)),i 6⊆ ker(τ)}.
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Corollary 6. Let V1, . . . , Vm be the constituents of V , and let τj : GκK((t)) → GL(Vj) be
the corresponding homomorphisms. For ρ ∈ (0, 1) sufficiently close to 1, the multiset of
subsidiary radii of D†(V ) ⊗ Fρ consists of max{i ≥ 1 : GκK((t)),i 6⊆ ker(τj)} with multiplicity
dim(Vj), for j = 1, . . . , m.

Using the integrality properties of subsidiary radii, we may deduce that for ρ ∈ (0, 1)
sufficiently close to 1, the the product of the subsidiary radii is an integral power of ρ; this
amounts to verifying the Hasse-Arf theorem for V (integrality of the Artin conductor).

One might reasonably wonder whether there is a good analogue of Theorem 5 in case the
residue field of K is not perfect. There are several difficulties, one of which is to decide upon
a good analogue of the upper numbering filtration. Such an analogue has been constructed
by Abbes and Saito; the resulting analogue of Theorem 5 was proved recently by Chiarellotto
and Pulita for dim(V ) = 1, and more recently, by Liang Xiao in general.

4 Representations with finite image of inertia

Let τ : GκK((t)) → GL(V ) be a homomorphism which is now continuous for the p-adic
topology on V , rather than the discrete topology. One can form a differential module over
E by taking

D(V ) = (V ⊗K Êunr)GκK ((t))

but this in general does not descend to E †.
Suppose, however, that the image of GκK((t)),1

∼= Gκsep
K ((t)) (the inertia subgroup) is finite;

that is, τ has finite local monodromy. Let E †
κsep

K ((t))
be the ring defined in the same fashion as

E† but using K̂unr on the coefficients; let GκK((t)) act on this ring via its unramified quotient.
We can then define

D†(V ) = (V ⊗K (E†
κsep

K ((t))
)unr)GκK ((t))

and this will be a differential module over E † of the right dimension, again carrying a unit-root
Frobenius structure.

5 Unit-root Frobenius structures

If M is a differential module over E †, we say M is quasiconstant if M ⊗E†
L admits a basis of

horizontal sections for some L.

Theorem 7 (Tsuzuki). Let M be a finite differential module over E † admitting a unit-root
Frobenius structure for some Frobenius lift. Then M is quasiconstant.

It is important to note that the existence of a unit-root Frobenius structure for one
Frobenius lift implies the same for any other Frobenius lift. In fact, for the proof we need
to make a more precise observation, which is easy to check from the change of Frobenius
construction. Let us say that for c ∈ [0, 1), a basis e1, . . . , en of M is c-constant if Φ acts on
this basis via a matrix A =

∑
i Ait

i satisfying |A|1 = |A−1| = 1 and |A − A0|1 ≤ c.
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Lemma 8. Let M be a finite differential module over E † admitting a unit-root Frobenius
structure for some Frobenius lift φ1. Suppose that e1, . . . , en is a c-constant basis. Then
e1, . . . , en is also c-constant for the Frobenius structure corresponding to any other Frobenius
lift φ2.

Given this lemma, the proof can be broken into three steps; we refer to Tsuzuki’s original
paper (Amer. J. Math. 1998) for the proofs.

Lemma 9. Let M be a finite differential module over E † admitting a unit-root Frobenius
structure. Then there exists a positive integer m coprime to p such that M ⊗E †[t1/m] admits
a c-constant basis for some c ∈ (0, 1).

Lemma 10. Let M be a finite differential module over E † admitting a unit-root Frobenius
structure and a c-constant basis for some c ∈ (0, 1). Then for some finite extension L of
κK((t)), M ⊗ E†

L admits a c′-constant basis for some c′ ∈ (0, c).

These first two lemmas are easy for an absolute Frobenius lift, because you can actually
choose the basis to be fixed modulo some power of mK . This is the only case Tsuzuki origi-
nally addressed; however, in the compiled notes, I will explain how to modify the argument
slightly to work for a general Frobenius lift.

Lemma 11. Let M be a finite differential module over E † admitting a unit-root Frobenius
structure. Suppose that M admits a c-constant basis for some c < p−1/(p−1). Then M is
constant.

As noted by Christol, this last lemma can be proved elegantly using Frobenius an-
tecedents.

6 Quasiunipotent differential modules

Define the Robba ring to be
R = ∪α∈(0,1)K〈α/t, t}};

that is, R consists of formal sums
∑

cit
i which converge in some range α ≤ |t| < 1, but

need not have bounded coefficients. Unlike its subring E †, R is not a field; for instance, the
element

log(1 + t) =
∞∑

i=1

(−1)i−1

i
ti

is not invertible (because its Newton polygon has infinitely many slopes). More generally,
we have the following easy fact.

Lemma 12. We have R× = (E†)×.

5



In particular, R does not have a natural p-adic topology. The most useful topology on
R is the LF topology, which is the direct limit of the Fréchet topology on each K〈α/t, t}}
defined by the | · |ρ for ρ ∈ [α, 1).

In fact, the ring R is not even noetherian (this is related to an earlier exercise), but the
following useful facts are true, essentially by work of Lazard. (These depend on K being
spherically complete, which follows from our hypothesis that K is in fact discretely valued.)

Proposition 13. For an ideal I of R, the following are equivalent.

(a) The ideal I is closed in the LF topology.

(b) The ideal I is finitely generated.

(c) The ideal I is principal.

Proposition 14. Any finite free module on the half-open annulus with closed inner radius
α and open outer radius 1 is represented by a finite free module over K〈α/t, t}}, and so
corresponds to a finite free module over R. (The first part generalizes to half-open and open
annuli with arbitrary boundary radii.)

For L a finite separable extension of κK((t)), put

RL = R⊗E† E†
L.

We say a finite differential module M over R is quasiconstant if there exists L such that
M ⊗RL is trivial. We say M is quasiunipotent if it is a successive extension of quasiconstant
modules; it is equivalent to ask that M ⊗ E †

L be unipotent (i.e., an extension of trivial
differential modules) for some L (exercise).

Quasiunipotent differential modules have many useful properties. For instance, by Propo-
sition 3, they are all solvable at 1. Another important property is the following.

Proposition 15. Let M be a quasiunipotent differential module over R. Then the spaces
H0(M), H1(M) are finite dimensional, and there is a perfect pairing

H0(M) × H1(M∨) → H1(M ⊗ M∨) → H1(R) ∼= K
dt

t
.

Proof. This can be reduced to the unipotent case, for which it is an exercise.

The following important theorem asserts that many naturally occurring differential mod-
ules, including Picard-Fuchs modules, are quasiunipotent. See the notes for further discus-
sion.

Theorem 16 (p-adic local monodromy theorem). Let M be a finite differential module over
R admitting a Frobenius structure for some Frobenius lift. Then M is quasiunipotent.

We will have more to say about this theorem later.
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7 Notes

The weak topology on E is called the levelwise topology in [Ked04].
The statement of the p-adic local monodromy theorem (Theorem 16) was originally known

under the name Crew’s conjecture, because it emerged from the work of Crew on finite di-
mensionality of rigid cohomology with coefficients in an overconvergent F -isocrystal. The
original conjecture only concerned modules such that the differential and Frobenius struc-
tures were both defined over E †; this form was restated in a more geometric form by de
Jong.

The restricted case of Crew’s conjecture just described is the one that appears in appli-
cations to p-adic cohomology. However, the general form is in many ways more natural; this
was illustrated by the work of Tsuzuki, who explained how for an absolute Frobenius lift,
Theorem 16 would follow from a slope filtration theorem. Moreover, the proof by Berger
that Crew’s conjecture implies Fontaine’s conjecture Cpst (that de Rham representations are
potentially semistable) requires the unrestricted form of Crew’s conjecture.

There are essentially two methods for proving Theorem 16, each with its own merits. One
method is to follow Tsuzuki’s suggestion to construct slope filtrations for difference modules;
this was carried out by Kedlaya. (Beware that Tsuzuki’s original reduction argument only
applies in the case of an absolute Frobenius lift; for the general case, you have to modify it
as sketched in these notes.)

The second method is to use various results of Christol-Mebkhout to analyze differential
modules which are solvable at 1. This method was carried out by André and Mebkhout
(independently of each other and of Kedlaya).

8 Exercises

1. Let M be a differential module over R such that for some finite separable extension of
L, M ⊗ E†

L is unipotent. Prove that M is quasiunipotent.

2. Prove Proposition 15 in the case where M is unipotent.
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