
p-adic differential equations

18.787, Kiran S. Kedlaya, MIT, fall 2007

Regular and irregular singularities

In this lecture, we use the theory of Newton polygons for twisted polynomials to give an
algebraic treatment of the basic local theory of complex differential equations with mero-
morphic singularities. Along the way, we develop some results which we will use again in
the p-adic setting.

1 Spectral norm of a linear operator

Let F be a field equipped with an absolute value | · |, let V be a vector space over F equipped
with a compatible absolute value |·|V , and let T : V → V be a bounded linear transformation.
The operator norm of T is defined as

|T |V = sup
v∈V,v 6=0

{|T (v)|/|v|};

the fact that this is finite is precisely the condition that T is bounded.
The operator norm depends strongly on the norm on V (although the property of being

bounded only depends on the equivalence class of the norm). A less delicate invariant is the
spectral norm, defined as

|T |sp,V = lim
s→∞

|T s|
1/s
V ;

the existence of the limit follows from the fact |Tm+n|V ≤ |Tm|V |T
n|V and the following

lemma.

Lemma 1 (Fekete). Let {an}
∞
n=1 be a sequence of real numbers such that am+n ≥ am + an

for all m, n. Then the sequence {an/n}
∞
n=1 either converges to its supremum or diverges to

+∞.

Proof. Exercise.

Proposition 2. The spectral norm of T depends on the norm | · |V only up to equivalence.

Proof. Suppose | · |′V is an equivalent norm. We can then choose c > 0 such that |v|′V ≤
c|v|V and |v|V ≤ c|v|′V for all v ∈ V . We then have |T (v)|V /|v|V ≤ c2|T (v)|′V /|v|′V for all
v ∈ V − {0}. Applying this with T replaced by T s, this gives |T s|V ≤ c2|T s|′V , so

|T s|sp,V ≤ lim
s→∞

c2/s(|T s|′sp,V )1/s.

Since c2/s → 1 as s → ∞, this gives |T s|sp,V ≤ |T s|′sp,V . The reverse inequality holds by
reversing the roles of the norms.
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2 Spectral norms for differential operators

Let F be a nonarchimedean differential field. Since d is a bounded operator on F , we can
define the spectral norm |d|sp,F .

A normed differential module over F is a vector space V over F equipped with a norm
| · |V compatible with | · |F , and a derivation D with respect to d which is bounded as an
operator on V . (If V is finite dimensional over F , the boundedness condition is automatic;
if also F is complete, then any two norms on V are equivalent.) We define the truncated
spectral norm of D on V as

|D|tsp,V = max{|d|sp,F , |D|sp,V }.

(I do not know any examples where this differs from |D|sp,V itself, but I cannot prove the
equality. See the exercises for a partial result.)

In some cases, it may be useful to compute in terms of a basis of V over F .

Lemma 3. Suppose that V is finite dimensional over F . Fix a basis e1, . . . , en of V , and let
Ds be the matrix via which Ds acts on this basis; that is, Ds(ej) =

∑

i(Ds)ijei. Then

|D|tsp,V = max{|d|sp,F , lim sup
s→∞

|Ds|
1/s}. (1)

I suspect (but have not checked) that if the maximum is only achieved by the second
term, then you can replace the limit superior by a limit.

Proof. (Compare [CD94, Proposition 1.3].) Equip V with the supremum norm defined by
e1, . . . , en; then |Ds|V ≥ maxi,j |(Ds)i,j|. This implies that the left side of (1) is greater than
or equal to the the right side.

Conversely, for any x ∈ V , if we write x = x1e1 + · · · + xnen, then

Ds(x) =

n
∑

i=1

s
∑

j=0

(

s

j

)

dj(xi)D
s−j(ei),

so
|Ds|

1/s
V ≤ max

0≤j≤s
{|dj|

1/s
F |Ds−j|

1/s}. (2)

Given ǫ > 0, we can choose c = c(ǫ) such that for all s ≥ 0,

|ds|F ≤ c(|d|sp,F + ǫ)s

|Ds| ≤ c(lim sup
s→∞

|Ds|
1/s + ǫ)s.

(The c is only needed to cover small s.) Then (2) implies

|Ds|
1/s
V ≤ c2/s max{|d|sp,F + ǫ, lim sup

s→∞
|Ds|

1/s + ǫ}.

As s → ∞, the factor c2/s tends to 1. From this it follows that the right side of (1) is greater
than or equal to the left side minus ǫ; since ǫ > 0 was arbitrary, we get the same inequality
with ǫ = 0.
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Lemma 4. (a) For 0 → V1 → V → V2 → 0 a short exact sequence of differential modules,

|D|tsp,V = max{|D|tsp,V1
, |D|tsp,V2

}.

(b) For V1, V2 differential modules,

|D|tsp,V1⊗V2
≤ max{|D|tsp,V1

, |D|tsp,V2
},

with equality when |D|tsp,V1
6= |D|tsp,V2

.

(c) For V a finite differential module,

|D|tsp,V ∨ = |D|tsp,V .

Proof. Straightforward. (In case you don’t find the equality part of (b) so straightforward,
I will demonstrate how to deduce it from the other facts in a subsequent unit.)

Corollary 5. If V1, V2 are irreducible and |D|tsp,V1
6= |D|tsp,V2

, then every irreducible sub-
module W of V1 ⊗ V2 satisfies |D|tsp,W = max{|D|tsp,V1

, |D|tsp,V2
}.

There might be a simple proof improving this to cover irreducible subquotients of V1⊗V2,
but I don’t know of one. I’ll deduce something slightly weaker later (Corollary 10).

Proof. Suppose the contrary; we may assume that |D|tsp,V1
> |D|tsp,V2

. The inclusion W →֒
V1 ⊗ V2 corresponds to a nonzero horizontal section of W∨ ⊗ V1 ⊗ V2

∼= (W ⊗ V ∨
2 )∨ ⊗ V1,

which in turn corresponds to a nonzero map W ⊗V ∨
2 → V1. Since V1 is irreducible, the map

has image V1; that is, W ⊗ V ∨
2 has a quotient isomorphic to V1.

However, we can contradict this using Lemma 4. Namely,

|D|tsp,W⊗V ∨
2
≤ max{|D|tsp,W , |D|tsp,V2

} < |D|tsp,V1
,

so each nonzero subquotient of W ⊗ V ∨
2 has truncated spectral norm strictly less than

R(V1).

3 A coordinate-free approach

I mention in passing the following more coordinate-free approach to defining the truncated
spectral norm; in particular, there is no need to explicitly truncate when using this method.

Proposition 6 (Baldassarri-di Vizio). Let F be a nonarchimedean differential field of char-
acteristic 0 with d nontrivial; put F0 = ker(d). Let F{T}(s) be the set of twisted polynomials
of degree at most s; define the norm of P ∈ F{T}(s) as |P (d)|F (that is, consider P (d) as an
operator on F ). Let V be a finite differential module over F , and fix a norm on V compatible
with | · |. Let LF0

(V ) be the space of bounded F0-linear endomorphisms of V , equipped with
the operator norm. Let Ds : F{T}(s) → LF0

(V ) be the map P 7→ P (D). Then

|D|tsp,V = |d|sp,F lim
s→∞

|Ds|
1/s. (3)

3



Proof. We have |D|tsp,V ≤ |d|sp,F lim infs→∞ |Ds|
1/s because on one hand |Ds|V ≤ |ds|F |Ds|

by taking T s ∈ F{T}(s), and on the other hand lim inf |Ds|
1/s ≥ 1 because 1 ∈ F{T}(n). In

the other direction, we may prove |D|tsp,V ≥ |d|sp,F lim sups→∞ |Ds|
1/s by imitating the proof

of Lemma 3.

4 Twisted polynomials and spectral norms

When F is a nonarchimedean differential field, we have been writing

r0 = min
f∈F

{v(d(f)) − v(f)}.

In our new notation, this is just − log |d|F .

Theorem 7 (Christol-Dwork). Let F be a complete nonarchimedean differential field, and
let V be a finite dimensional differential module over F . Assume that V admits a cyclic
vector, and write V ∼= F{T}/F{T}P for some P ∈ F{T}. Let r be the least slope of the
Newton polygon of P . Then

max{|d|F , |D|tsp,V } = max{|d|F , e−r}.

You might want to ponder the case of d trivial first, as the general case is similar.

Proof. By factoring P as in the previous unit, then applying Lemma 4, we may reduce to
the case where either P has a single slope r < r0, or P has all slopes at least r0.

Write P = T d +
∑d−1

i=0 PiT
i, so that |Pi| ≤ e−r(d−i) with equality for i = 0. Equip V with

the norm
|a0 + a1T + · · ·+ ad−1T

d−1|V = max
i

{|ai|e
−ri}.

Let U be the F -linear map defined by

U(T i) = T i+1 (i = 0, . . . , d − 2), U(T d−1) = −

d−1
∑

i=0

PiT
i.

Suppose that r ≤ r0 and that P has all slopes at least r. Then |Un|V ≤ e−rn for all
nonnegative integers n. On the other hand, |D − U |V ≤ |d|F , so |Dn − Un|V ≤ |d|Fe−r(n−1).
Hence |Dn|V ≤ e−rn.

In case P has all slopes at least r0, we take r = r0 above and deduce the desired result.
In case P has all slopes equal to r, we have |Un|V = e−rn > |Dn−Un|V and so |Dn|V = e−rn,
again as desired.
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5 Decomposition by truncated spectral norm

Theorem 8 (Weak decomposition theorem). Let F be a complete nonarchimedean differen-
tial field of characteristic zero with nontrivial derivation, and let V be a finite dimensional
differential module over F . Then there exists a decomposition

V = V0 ⊕
⊕

s>|d|F

Vs

of differential modules, such that every subquotient of Vs has truncated spectral norm s, and
every subquotient of V0 has truncated spectral norm at most |d|F .

Proof. We induct on dim(V ). Choose a cyclic vector for V (possible because of the hypothe-
ses we imposed on F ), yielding an isomorphism V ∼= F{T}/F{T}P . Let r be the least
slope of P . If r ≥ r0, we may put V = V0 and be done, so assume r < r0. Factor P by
slopes as in the previous unit; this gives a short exact sequence 0 → V1 → V → V2 → 0 in
which (by Theorem 7) every subquotient of V1 has truncated spectral norm e−r, and every
subquotient of V2 has truncated spectral norm less than e−r. Factoring P the other way,
we get a short exact sequence 0 → V ′

2 → V → V ′
1 → 0 where every subquotient of V ′

1 has
truncated spectral norm e−r, and every subquotient of V ′

2 has truncated spectral norm less
than e−r. Moreover, dim V1 = dim V ′

1 and dim V2 = dim V ′
2 because P and its formal adjoint

have the same multiplicities for slopes less than r0. Consequently, V1 ∩ V ′
2 = 0, so V1 ⊕ V ′

2

injects into V ; by counting dimensions, this must be an isomorphism. This lets us split
V ∼= V1 ⊕ V2, and we may apply the induction hypothesis to V2 to get what we want.

Corollary 9. Let F be a complete nonarchimedean differential field, and let V be a finite
dimensional differential module over F such that every subquotient of V has truncated spectral
norm greater than |d|F . Then H0(V ) = H1(V ) = 0.

Proof. The claim about H0 is clear: a nonzero element of H0(V ) would generate a differen-
tial submodule of V which would be trivial, and thus would have truncated spectral norm
|d|sp,F ≤ |d|F . As for H1, let 0 → V → W → F → 0 be a short exact sequence of differential
modules. Decompose W = W0 ⊕W1 according to Theorem 8, with every subquotient of W0

having truncated spectral norm at most |d|F , and every subquotient of W1 having truncated
spectral norm greater than |d|F . The map V → W0 must vanish (its image is a subquotient
of both V and W0), so V ⊆ W1. But W1 6= W as otherwise W could not surject onto a
trivial module, so V = W1. Hence the sequence splits, proving H1(V ) = 0.

Corollary 10. If V1, V2 are irreducible, |D|tsp,V1
> |d|F , and |D|tsp,V1

> |D|tsp,V2
, then every

irreducible subquotient W of V1 ⊗ V2 satisfies |D|tsp,W = |D|tsp,V1
.

Proof. Decompose V1 ⊗ V2 = V0 ⊕
⊕

s>|d|F
Vs according to Theorem 8; we have Vs = 0

whenever s > |D|tsp,V1
. If either V0 or some Vs with s < |D|tsp,V1

were nonzero, then V1 ⊗ V2

would have an irreducible submodule of spectral norm less than |D|tsp,V1
, in violation of

Corollary 5.
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For the study of irregularity, these results are quite sufficient. However, in the p-adic
situation, we will have to do better than this in order to further decompose V0; we will do
this using Frobenius antecedents in a later unit.

6 Irregularity

We now take F = C((z)), | · | = e−vz(·), and d = z d
dz

, so that |d|F = 1 and r0 = 0. That
is, the Newton polygon theory for twisted polynomials over F applies for negative slopes.
Moreover, |d|sp,F = 1 also, so there is no shortfall in Theorem 8; the term V0 has truncated
spectral norm 1.

Let V be a finite differential module over F . Decompose V according to Theorem 8. The
irregularity of V is defined as

irr(V ) =
∑

s>1

(− log s) dim(Vs).

By our previous results, we can now read off the following result.

Theorem 11. For any isomorphism V ∼= F{T}/F{T}P , the irregularity of P is equal to
the sum of the negative slopes of P ; consequently, it is always an integer. More explicitly, if
P = T d +

∑d−1
i=0 PiT

i, then
irr(V ) = max

i
{−vz(Pi)}.

For F a subfield of C((z)) stable under d, and V a finite differential module over F , we
define the irregularity by extending scalars to C((z)).

Corollary 12. Let F be any subfield of C((z)) containing z, and let V be a finite-dimensional
differential module over F . Then the following are equivalent.

(a) The irregularity of V is equal to 0.

(b) For some isomorphism V ∼= F{T}/F{T}P with P monic, P has coefficients in oF .

(c) For any isomorphism V ∼= F{T}/F{T}P with P monic, P has coefficients in oF .

(d) There exists a basis of V on which D acts via a matrix over oF .

Proof. It is clear that (a) implies (c) implies (b) implies (d). Given (d), let | · |V be the
supremum norm defined by the chosen basis of V ; then |D|V ≤ 1, so |D|sp ≤ 1, which
implies (a).

We say that V is regular if any of the equivalent conditions hold.
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7 More on regular singularities

Let us take a moment to see how this algebraic setup informs the study of differential
equations over C with meromorphic singularities; as this is a bit tangential for our purposes,
we defer to [DGS94] for most details.

We first record something you already knew.

Theorem 13. Fix ρ > 0, and let R ⊂ CJzK be the ring of power series convergent for
|z| < ρ. Let N be an n × n matrix over R congruent to 0 modulo z. Then the differential
system D(v) = Nv + d(v) has a basis of horizontal sections.

Proof. Apply the fundamental theorem of ordinary differential equations.

Let C{z} be the subring of C((z)) consisting of the Laurent series expansions of functions
meromorphic in a neighborhood of z = 0; then C{z} satisfies the hypothesis of Corollary 12.
Consider the differential system D(v) = Nv + d(v), for N an n × n matrix over C{z}.
We can find a basis of horizontal sections on a disc around some point near 0 (by the
previous theorem, it suffices to take a disc on which the entries of N are all holomorphic
away from z = 0), then analytically continue them around to get a different basis of the
same space. The linear transformation affected by the analytic continuation is called the
monodromy transformation of the system, and we would dearly like to get a closer look at
it, for instance, because of the following observation.

Proposition 14. Any fixed vector under the monodromy transformation corresponds to a
horizontal section defined on some punctured disc, rather than the universal covering space
of a punctured disc. As a result, the monodromy transformation is unipotent if and only if
there exists a basis on which D acts via a nilpotent matrix.

Proof. Straightforward.

It is rather difficult in general to get information about the monodromy transformation
by looking at the differential system. What makes regular singularities so pleasant is that it
is quite easy to read off the eigenvalues of the monodromy transformation; this is analogous
to the fact that the residue of a complex-valued function is quite easy to read off at a simple
pole and somewhat trickier to compute otherwise.

We say that a square matrix N has prepared eigenvalues if the eigenvalues λ1, . . . , λn of
N satisfy the following conditions:

λi ∈ Z ⇔ λi = 0

λi − λj ∈ Z ⇔ λi = λj.

If only the second condition holds, we say that N has weakly prepared eigenvalues.

Theorem 15 (Fuchs). Let V be a regular finite dimensional differential module over C{z},
and let e1, . . . , en be a basis on which D acts via a matrix N over the valuation ring (the
ring of power series over C with positive radii of convergence). Assume that the matrix N0

of constant terms of N has weakly prepared eigenvalues. Then there is another basis of V
on which D acts via N0.
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Proof. See exercises, or [DGS94, §III.8, Appendix II].

Corollary 16. With notation as in Theorem 15, let λ1, . . . , λn be the eigenvalues of N0.
Then the eigenvalues of the monodromy transformation (of the system D(v) = Nv + dv) are
e−2πiλ1 , . . . , e−2πiλn.

Proof. In terms of a basis via which D acts via N0, the matrix exp−N0 log(z) provides a basis
of horizontal elements. (The case N0 = 0 is Theorem 13.)

In order to enforce the condition on prepared eigenvalues, we use what are classically
known as shearing transformations.

Proposition 17 (Shearing transformations). Let N be an n × n matrix over the valuation
ring of C{z}, with constant term N0. Let α be an eigenvalue of N . Then there exists
U ∈ GLn(C[z, z−1]) such that U−1NU + U−1d(U) again has entries in the valuation ring of
C{z}, and its matrix of constant terms has the same eigenvalues as N0 except that α has
been replaced by α + 1. The same conclusion holds with α − 1 in place of α + 1.

Proof. Exercise.

Corollary 18 (Fuchs). Let V be a regular finite dimensional differential module over C{z}.
Then any horizontal element of V ⊗C((z)) belongs to V itself; that is, any formal horizontal
section is convergent.

In particular, the eigenvalues of N modulo z are well determined modulo Z; they are
called the exponents of the differential module. A particularly important case is when the
exponents are all rational, as this implies that the module is quasi-unipotent, i.e., after pulling
back along z 7→ zm for some positive integer m, the module becomes a successive extension
of trivial differential modules. Quasi-unipotent monodromy occurs whenever V “comes from
geometry” in a sense that we will make precise later.

8 Index and irregularity

Let F be any subfield of C((z)) containing C(z), and let V be a finite differential module
over F . We say V has index if dimC H0(V ) and dimC H1(V ) are both finite; in this case, we
define the index of V as χ(V ) = dimC H0(V ) − dimC H1(V ).

Proposition 19. For any finite differential module V over C((z)), H0(V ) = H1(V ) = 0.

Proof. Exercise.

In the convergent case, the index carries more information.

Theorem 20. Let V be a finite differential module over C{z}. Then V has index, and
χ(V ) = − irr(V ).

Proof. See for instance [Mal74, Théorème 2.1].

8



9 Notes

Proposition 6 is from as yet unreleased work of Baldassarri and di Vizio (a promised sequel
to [BdV07]), which gives a development of much of the material we are discussing from the
point of view of Berkovich analytic spaces. This point of view will probably be vital for the
study of differential modules on higher-dimensional spaces, but we will not be doing that in
these notes.

The proof of Theorem 7 given originally in [CD94, Théorème 1.5] is slightly incorrect.
The error is in the implication 1 =⇒ 2; there one makes a finite extension of the differential
field, without accounting for the possibility that this might increase |d|F . We get around
this by using Robba’s factorization argument; otherwise, the proof above is very similar to
that of Christol and Dwork. A similar argument appears as [DGS94, Lemma VI.2.1], but in
the language of generic radii of convergence which we will introduce in the next unit.

The notion a regular singularity was introduced by Fuchs in the 19th century, as part
of a classification of those differential equations with everywhere meromorphic singularities
on the Riemann sphere which had algebraic solutions. Regular singularities are sometimes
referred to as Fuchsian singularities. Much of our modern understanding of the regularity
condition, especially in higher dimensions, comes from the book of Deligne [Del70].

The algebraic definition of irregularity is due to Malgrange [Mal74]; it had previously
been defined in terms of the index of a certain operator. Our approach, incorporating ideas
of Robba, is based on [DGS94, §3].

A complex analytic interpretation of the Newton polygon, in the manner of the relation
between irregularity and index, has been given by Ramis [Ram84]. It involves considering
subrings of C{z} composed of functions with certain extra convergence restrictions (Gevrey
functions), and looking at the index of z d/dz after tensoring the given differential module
with one of these subrings.

10 Exercises

1. Prove Fekete’s lemma (Lemma 1).

2. Let A, B be commuting bounded linear operators on a normed vector space V over a
nonarchimedean field F . Prove that

|A + B|sp,V ≤ max{|A|sp,V , |B|sp,V },

and that equality occurs when the maximum is achieved only once.

3. Let V be a normed differential module over a normed differential field F , and pick a
norm | · |V on V compatible with | · |. Prove that |D|V ≥ |d|F .

4. In this exercise, we prove Fuchs’s theorem (Theorem 15). Let N be an n × n matrix
over CJzK. Let U be an n × n matrix over CJzK congruent to the identity modulo z.
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(a) Show that changing basis by U in the differential system D(v) = Nv + d(v) has
the effect of replacing N by N ′ = U−1NU + U−1z dU

dz
.

(b) Show that N ′ ≡ N (mod z).

(c) Assume that the reduction of N modulo z has prepared eigenvalues. Show that
there is a unique choice of U for which N ′ equals the matrix of constant terms of
N .

(d) Suppose that the entries of N converge in the disc |z| < ρ. Prove that the entries
of the matrix U given in (c) also converge in the disc |z| < ρ.

5. Prove Proposition 17.

6. Prove Proposition 19.
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