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Introduction

Origins, goals, and outcome

The original text underlying this book was a set of notes1 I compiled, originally as a par-
ticipant and later as an instructor, for the Math Olympiad Program (MOP),2 the annual
summer program to prepare U.S. high school students for the International Mathematical
Olympiad (IMO). Given the overt mission of the MOP, the notes as originally compiled were
intended to bridge the gap between the knowledge of Euclidean geometry of American IMO
prospects and that of their counterparts from other countries. To that end, they included a
large number of challenging problems culled from Olympiad-level competitions from around
the world.

However, the resulting book you are now reading shares with the MOP a second mission,
which is more covert and even a bit subversive. In revising it, I have attempted to usher the
reader from the comfortable world of Euclidean geometry to the gates of “geometry” as the
term is defined (in multiple ways) by modern mathematicians, using the solving of routine
and nonroutine problems as the vehicle for discovery. In particular, I have aimed to deliver
something more than “just another problems book”.

In the end, I became unconvinced that I would succeed in this mission through my own
efforts alone; as a result, the manuscript remains in some ways unfinished. For one, it still
does not include figures (though some of these do exist online; see the chapter “About the
license”); for another, I would ideally like to include some additional material in Part III
(examples: combinatorial geometry, constructibility).

Rather than continue endlessly to “finish” the manuscript, I have instead decided to
carry the spirit of the distribution of the notes to a new level, by deliberately releasing an
incomplete manuscript as an “open source” document using the GNU Free Documentation
License; (for more on which see the chapter “About the license”). My hope is that this will
encourage readers to make use of this still unpolished material in ways I have not foreseen.

1The original notes have been circulating on the Internet since 1999, under the pedestrian title “Notes
on Euclidean Geometry”.

2The program has actually been called the Math Olympiad Summer Program (MOSP) since 1996, but
in accordance to common custom, we refer to the original acronym.
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Methodology

This book is not written in the manner of a typical textbook. (Indeed, it is not really
designed to serve as a textbook at all, though it could certainly be used as one with highly
motivated students.) That is, we do not present full developments of key theorems up front,
leaving only routine exercises for the reader to consider. For one, we leave strategic gaps
in the exposition for the reader to fill in. For another, we include a number of nonroutine
problems, of the sort found on the IMO or related national competitions. The reader may or
may not succeed in solving these, but attempting them should provide a solid test of one’s
understanding. In any case, solutions to the exercises and problems are included in the back;
we have kept these brief, and they are only intended to make sense once you have already
thought a bit about the corresponding exercises/problems on your own.

In addition to the MOP (and in some sense the Socratic method), inspirations for this
approach include the famous Moore method of learning through problems, and the number
theory curriculum of the late Arnold Ross’s renowned summer mathematics program3 for
high school students. We also take inspiration from the slender classic Geometry Revisited
by H.S.M. Coxeter and S. Greitzer, among whose pages this author discovered the beauty
of Euclidean geometry so carefully hidden by many textbook writers. Indeed, we originally
considered titling this book “Geometry Revisited” Revisited in homage to the masters; we
ultimately chose instead to follow Aeschylus and Percy Bysshe Shelley in depicting geometry
as a titanic subject released from the shackles of school curricula.

Structure of the book

Aside from this introduction, the book is divided into four parts. The first part, “Rudiments”,
is devoted to the foundations of Euclidean geometry and to some of the most pervasive ideas
within the subject. The second part, “Special situations”, treats some common environments
of classical synthetic geometry; it is here where one encounters many of the challenging
Olympiad problems which helped inspire this book. The third part, “The roads to modern
geometry”, consists of two4 chapters which treat slightly more advanced topics (inversive and
projective geometry). The fourth part, “Odds and ends”, is the back matter of the book, to
be consulted as the need arises; it includes hints for the exercises and problems (for more
on the difference, see below), plus bibliographic references, suggestions for further reading,
information about the open source license, and an index.

Some words about terminology are in order at this point. For the purposes of this book,
a theorem is an important result which either is given with its proof, or is given without its
proof because inclusion of a proof would lead too far afield. In the latter case, a reference is
provided. A corollary is a result which is important in its own right, but is easily deduced

3Arnold Ross may no longer be with us, but fortunately his program is: its web site is
http://www.math.ohio-state.edu/ross/.

4We would like to have additional such chapters, perhaps in a subsequent edition of the book, perhaps in
a derivative version.
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from a nearby theorem. A fact is a result which is important but easy enough to deduce
that its proof is left to the reader.

Most sections of the text are accompanied by a section labeled “Problems”, which are
additional assertions which the reader is challenged to verify. Some of these are actually what
we would call exercises, i.e., results which the reader should not have any trouble proving
on his/her own, given what has come before. By contrast, a true problem is a result that
can be obtained using the available tools, but which also requires some additional insight.
In part to avoid deterring the reader from trying the more challenging problems (but also to
forestall some awkwardness in cross-referencing), we have used the term “problem” in both
cases. Hints have been included in the back matter of the book for selected problems; in
order that the hints may also cover facts, some problems take the form “Prove Fact 21.13.”
In order to keep the book to a manageable size, and also to avoid challenging the reader’s
willpower, solutions have not been included; they may be instead found online at

I have attributed my source for each problem to the best of my knowledge. Problems from
the USA Mathematical Olympiad (USAMO), International Mathematical Olympiad (IMO),
USA Team Selection Test (TST), and William Lowell Putnam competition (Putnam) are
listed by year and number; problems from other national or regional contests are listed by
country/contest and year. Problems I obtained from MOP are so labeled when I was unable
to determine their true origins; most of these probably come from national contests. Arbelos5

refers to Samuel Greitzer’s student publication from 1982–1987 [8], and Monthly refers to
the American Mathematical Monthly. Problems listed as “Original” are my own problems
which have not before appeared in print (excluding prior versions of this book). Attributions
to other people or web sites should be self-explanatory.

Acknowledgments

The acknowledgments for a book such as this cannot help but be at once tediously volu-
minuous and hopelessly inadequate. That being so, there is nothing to done other than to
proceed forthwith.

Let me start with those most directly involved. Thanks to Reid Barton for assembling a
partial set of solutions to the included problems. Thanks to Marcelo Alvisio for expanding
this solution set, for reporting numerous typos in the 1999 manuscript, and for rendering
the missing diagrams from the 1999 manuscript using The Geometer’s Sketchpad R©. Thanks
to Arthur Baragar for helpful (though not yet carried out) advice concerning the rendering
of diagrams.

Let me next turn to those whose contributions are more diffuse. I first learned Euclidean
geometry in the manner of this book from my instructors and later colleagues at the MOP,
including Titu Andreescu, Răzvan Gelca, Anne Hudson, Gregg Patruno, and Dan Ullman.
The participants of the 1997, 1998, and 1999 MOPs also deserve thanks for working through
the notes that formed the basis for this book.

5For the origin of the name “arbelos”, see Section 10.2.
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I owe a tremendous expository debt to Bjorn Poonen and Ravi Vakil, my collaborators on
the 1985-2000 Putnam compilation [12]. In that volume, we embarked on a grand experiment:
to forge a strong expository link between challenging “elementary” problems and “deep”
mathematics. The warm reception received by that volume has emboldened me to apply to
the present book some of what we learned from this experiment.

Thanks to the compilers of the wonderfully comprehensive MacTutor History of Mathe-
matics, available online at

http://www-gap.dcs.st-and.ac.uk/~history/index.html.

We have used MacTutor as our reference for historical comments, English spellings of names,
and birth and death dates. (All dates are A.D. unless denoted B.C.E.6)

6The latter stands for “Before the Common Era”, while the former might be puckishly deciphered as
“Arbitrary Demarcation”.
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Chapter 1

Construction of the Euclidean plane

The traditional axiomatic development of Euclidean geometry originates with the treatment
by Euclid of Alexandria (325?–265? B.C.E.) in the classic Elements, and was modernized
by David Hilbert (1862–1943) in his 1899 Grundlagen der Geometrie (Foundations of Geom-
etry). For the purposes of this book, however, it is more convenient to start with the point
of view of a coordinate plane, as introduced by René Descartes1 (1596–1690) and Pierre de
Fermat (1601–1665). We will return to the axiomatic point of view in due course, when we
discuss hyperbolic geometry in Chapter 10; however, the coordinate-based point of view will
also recur when we dabble briefly in algebraic geometry (see Section 11.7).

Of course one must assume something in order to get started. What we are assuming are
the basic properties of the real numbers, which should not be too much of an imposition.
The subtlest of these properties is the least upper bound property : every set of real numbers
which is bounded above has a least upper bound. More precisely, if S is a set of real numbers
and there exists a real number x such that x ¥ y for all y P S, then there is a (unique) real
number z such that:

(a) z ¥ y for all y P S;

(b) if x ¥ y for all y P S, then x ¥ z.

One theme we carry through our definitions is that certain numerical quantities (lengths of
segments along a line, areas, arc and angle measures) should be treated with special algebraic
rules, including systematic sign conventions. In so doing, one can make some statements
more uniform, by eliminating some dependencies on the relative positions of points. This
uniformity was unavailable to Euclid in the absence of negative numbers, hampering efforts
to maintain logical consistency; see Section 1.6 for a tricky example.

In any case, while the strictures of logic dictate that this chapter must occur first, the
reader need not be so restricted. We recommend skipping this chapter on first reading and
coming back a bit later, once one has a bit of a feel for what is going on. But do make
sure to come back at some point: for mathematicians (such as the reader and the author)

1This attribution explains the term “Cartesian coordinates” to refer to this type of geometric description.
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to communicate, it is always of the utmost importance to agree on the precise definitions of
even the simplest of terms.2

1.1 The coordinate plane, points and lines

We start by using Cartesian coordinates to define the basic geometric concepts: points, lines,
and so on. The reader should not think his/her intelligence is being insulted by our taking
space to do this: it is common in a mathematical text to begin by defining very simple
objects, if for no other reason than to make sure the author and reader agree on the precise
meaning and usage of fundamental words, as well as on the notation to be used to symbolize
them (see previous footnote).

For our purposes, the plane R2 is the set of ordered pairs px, yq of real numbers; we call
those pairs the points of the plane. A line (or to be more precise, a straight line3) will be
any subset of the plane of the form

tpx, yq P R2 : ax� by � c � 0u

for some real numbers a, b, c with a and b not both zero. Then as one expects, any two
distinct points P1 � px1, y1q and P2 � px2, y2q lie on a unique line, namely

ÐÝÑ
P1P2 � tpp1� tqx1 � tx2, p1� tqy1 � ty2q : t P Ru.

Similarly, we define the ray

ÝÝÑ
P1P2 � tpp1� tqx1 � tx2, p1� tqy1 � ty2q : t P r0,8qu

and the segment (or line segment)

P1P2 � tpp1� tqx1 � tx2, p1� tqy1 � ty2q : t P r0, 1su.

Any segment lies on a unique line, called the extension of the segment. We say points
P1, . . . , Pn are collinear if they lie on a single line; if ` is that line, we say that P1, . . . , Pn lie
on ` in order if for any distinct i, j, k P t1, . . . , nu with i   j, we have i   k   j if and only if
Pk lies on the segment PiPj. For n � 3, we also articulate this by saying that P2 lies between
P1 and P3. We say lines `1, . . . , `n are concurrent if they contain (or “pass through”) a single
point.

We will postpone defining angles for the moment, but we may as well define parallels and
perpendiculars now. We say two lines ax � by � c � 0 and dx � ey � f � 0 are parallel if
ae� bd � 0, and perpendicular if ae� bd � 0. Then the following facts are easily verified.

2As mathematician/storyteller Lewis Carroll, né Charles Lutwidge Dodgson, put it in the voice of Through
the Looking Glass character Humpty Dumpty: “When I use a word... it means exactly what I choose it to
mean—neither more nor less.”

3The term “straight line” may be redundant in English, but it is not so in other languages. For instance,
the Russian term for a curve literally translates as “curved line”.
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Fact 1.1.1. Through any given point, there is a unique line parallel/perpendicular to any
given line.

For ` a line and P a point, the intersection of ` with the perpendicular to ` through P is
called the foot of the perpendicular through P .

Fact 1.1.2. Given three lines `1, `2, `3, the following relations hold.

If `1 and `2 are: and `2 and `3 are: then `1 and `3 are:
parallel parallel parallel
parallel perpendicular perpendicular

perpendicular parallel perpendicular
perpendicular perpendicular parallel.

Given a segment P1P2, there is a unique point M on P1P2 with P1M � MP2, called

the midpoint of P1P2. There is a unique line through M perpendicular to
ÐÝÑ
P1P2, called the

perpendicular bisector of P1P2.
Of course there is nothing special about having only two dimensions; one can construct

an n-dimensional Euclidean space for any n. In particular, it is not unusual to do this for
n � 3, resulting in what we call space geometry4 as opposed to plane geometry. Although
we prefer for simplicity not to discuss space geometry, we will make occasional reference to
it in problems.

1.2 Distances and circles

The distance between two points P1 � px1, y1q and P2 � px2, y2q is defined by

P1P2 � dpP1, P2q �
a
px1 � x2q2 � py1 � y2q2;

we also describe this quantity as the length of the segment P1P2. If P1P2 and P3P4 are
collinear segments (i.e., the points P1, P2, P3, P4 are collinear), we define the signed ratio of
lengths of the segments P1P2 and P3P4 to be the ratio P1P2{P3P4 if the intersection of the

rays
ÝÝÑ
P1P2 and

ÝÝÑ
P3P4 is a ray, and �P1P2{P3P4 otherwise. (In the latter case, the intersection

of the two rays may be a segment, a point, or the empty set.)
From the distance formula, one can verify the triangle inequality.

Fact 1.2.1 (Triangle inequality). Given points P1, P2, P3, we have

P1P2 � P2P3 ¥ P1P3,

with equality if and only if P3 lies on the segment P1P2.

We can also define the distance from a point to a line.

4The term “solid geometry” is more common, but less consistent.
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Fact 1.2.2. Let P be a point and
ÐÑ
QR a line. Let S be the intersection of

ÐÑ
QR with the line

through P perpendicular to
ÐÑ
QR. Then the minimum distance from P to any point on

ÐÑ
QR is

equal to PS.

We call this minimum the distance from P to
ÐÑ
QR, and denote it dpP,

ÐÑ
QRq.

With a notion of distance in hand, we may define a circle (resp. a disc or closed disc, an
open disc) as the set of points P in the plane with the property that OP � r (resp. OP ¤ r)
for some point O (the center) and some positive real number r (the radius); note that both
O and r are uniquely determined by the circle. We call the quantity 2r the diameter of the
circle/disc. Given a closed disc with center O and radius r, we call the circle of the same
center and radius the boundary of the disc; we call the open disc of the same center and
radius the interior of the circle or of the closed disc.

Fact 1.2.3. Any three distinct points which do not lie on a straight line lie on a unique
circle.

Any segment joining the center of a circle to a point on the circle is called a radius5 of
the circle. Any segment joining two points on a circle is called a chord of the circle. A chord
passing through the center is called a diameter ; clearly its length is twice the radius of the
circle.

Fact 1.2.4. Any line and circle intersect at either zero, one, or two points. Any two distinct
circles intersect at either zero, one, or two points.

A line and circle that meet at exactly one point are said to be tangent. If ω is a circle, A
is a point on ω, and ` is a line through A, we will speak frequently of the “second intersection
of ` and ω”; when the two are tangent, we mean this to be A itself.

Two distinct circles which meet in exactly one point are also said to be tangent. In this
case, either one circle lies inside the other, in which case the two are said to be internally
tangent, or neither circle contains the other, in which case the two are said to be externally
tangent.

Two or more circles with the same center are said to be concentric; concentric circles
which do not coincide also do not intersect.

Fact 1.2.5. Through any point P on a circle ω, there is a unique line tangent to ω: it is the
line perpendicular to the radius of ω ending at P .

It will be useful later (in the classification of rigid motions; see Theorem 3.1.2) to have
in hand the “triangulation principle”; this fact was used once upon a time for navigation at
sea, and nowadays figures in the satellite-based navigation technology known as the Global
Positioning System.

5This is the first of numerous occasions on which we use the same word to denote both a segment and
its length. This practice stems from the fact that Euclid did not have an independent concept of “length”,
and instead viewed segments themselves as “numbers” to be manipulated arithmetically.
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Fact 1.2.6. Let A, B, C be distinct points. Then any point P in the plane is uniquely
determined by the three distances PA, PB, PC; that is, if P, Q are points in the plane with
PA � QA,PB � QB,PC � QC, then P � Q.

For n ¥ 4, if P1, . . . , Pn are distinct points and ω is a circle, we say that P1, . . . , Pn lie
on ω in that order if P1, . . . , Pn lie on ω and the polygon P1 � � �Pn is simple (hence convex).

Problems for Section 1.2

1. Prove Fact 1.2.6.

2. Let ω1 and ω2 be circles with respective centers O1 and O2 and respective radii r1 and
r2, and let k be a real number not equal to 1. Prove that the set of points P such that

PO2
1 � r2

1 � kpPO2
2 � r2

2q

is a circle. (This statement will be reinterpreted later in terms of the power of a point
with respect to a circle; see Section 6.1.)

3. (IMO 1988/1) Consider two circles of radii R and r (R ¡ r) with the same center. Let
P be a fixed point on the smaller circle and B a variable point on the larger circle. The

line
ÐÑ
BP meets the larger circle again at C. The perpendicular ` to

ÐÑ
BP at P meets

the smaller circle again at A. (As per our convention, if ` is tangent to the circle at P ,
then we take A � P .)

(i) Find the set of values of BC2 � CA2 � AB2.

(ii) Find the locus of the midpoint of AB.

1.3 Triangles and other polygons

The word “polygon” can mean many slightly different things, depending on whether one
allows self-intersections, repeated vertices, degeneracies, etc. So one has to be a bit careful
when defining it, to make sure that everyone agrees on what is to be allowed.

Let P1, . . . , Pn be a sequence of at least three points in the plane. The polygon (or closed
polygon) with vertices P1, . . . , Pn is the pn� 1q-tuple pP1, . . . , Pn, Uq, where U is the union
of the segments P1P2, . . . , Pn�1Pn, PnP1. We typically refer to this polygon as P1 � � �Pn; each
of the Pi is called a vertex 6 of the polygon, and each of the segments making up U is called
a side.

The perimeter of a polygon is the sum of the lengths of its underlying segments. It is
often convenient to speak of the semiperimeter of a polygon, which is simply half of the
perimeter.

6The standard plural of “vertex” is “vertices”, although “vertexes” is also acceptable. What is not
standard and should be avoided is the back-formation “vertice” as a synonym of “vertex”.
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A polygon is nondegenerate if no two of its vertices are equal and no vertex lies on
a segment of the polygon other than the two of which it is an endpoint. Note that for a
nondegenerate polygon, the union of segments uniquely determines the vertices up to cyclic
shift and reversal of the list.

A polygon is simple (or non-self-intersecting) if it is nondegenerate and no two segments
of the polygon intersect except at a shared endpoint.

For P1 � � �Pn a polygon, a diagonal of P1 � � �Pn is any segment joining two nonconsecutive
vertices. A simple polygon is convex if any two diagonals intersect (possibly at an endpoint).

Fact 1.3.1. If the points P1, . . . , Pn lie on a circle, then the polygon P1 � � �Pn is simple if
and only if it is convex.

If P1 � � �Pn is a convex polygon, we define the interior of P1 � � �Pn to be the set of points
Q such that for each i, the segment PiQ intersects the polygon only at its endpoint Pi.

A nondegenerate polygon of three, four, five or six sides is called a triangle, quadrilateral,
pentagon, or hexagon, respectively. Since triangles will occur quite often in our discussions,
we adopt some special conventions to deal with them. We will often refer to the triangle
with vertices A, B, C as 4ABC, and we will list its sides in the order BC,CA, AB. We will
often refer to its side lengths as a � BC, b � CA, c � AB.

Let ABC be a triangle. If two of the sides AB, BC, CA have equal lengths, we say
4ABC is isosceles ; if all three sides have equal lengths, we say 4ABC is equilateral. If the
angles of ABC are all acute, we say ABC is acute .

Let ABCD be a convex quadrilateral. If lines
ÐÑ
AB and

ÐÑ
CD are parallel, we say ABCD is

a trapezoid. If in addition lines
ÐÑ
BC and

ÐÑ
DA are parallel, we say ABCD is a parallelogram. If

in addition
ÐÑ
AB K

ÐÑ
BC, we say ABCD is a rectangle. If in addition AB � BC � CD � DA,

we say ABCD is a square.

1.4 Areas of polygons

If P1 � � �Pn is a polygon and Pi � pxi, yiq, we define the directed/signed area of P1 � � �Pn,
denoted rP1 � � �Pns�, by the formula

rP1 � � �Pns� �
1

2
px1y2 � x2y1 � x2y3 � x3y2 � � � � � xn�1yn � xnyn�1 � xny1 � x1ynq.

This formula is sometimes called the surveyor’s formula or the shoelace formula; the latter
name serves as a mnemonic in the following fashion. If one draws the 2� pn� 1q matrix�

x1 x2 � � � xn x1

y1 y2 � � � yn y1



,
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the terms of the shoelace formula are obtained by multiplying terms along the diagonals and
attaching signs as follows:

!!CC
CC

CC
CC

CC
CC

##GGGGGGGGGGGGG

##FFFFFFFFFFFFF �

""EE
EE

EE
EE

EE
EE
� � �

x1 x2 � � � xn y1

y1 y2 � � � yn y1

=={{{{{{{{{{{{

;;xxxxxxxxxxxxx

;;xxxxxxxxxxxxx �

<<yyyyyyyyyyyy
� � �

We define the area of the polygon P1 � � �Pn, denoted rP1 � � �Pns, to be the absolute value
of its directed area.

Fact 1.4.1. • For any polygon P1 � � �Pn,

rP1 � � �Pns� � rP2 � � �PnP1s� � �rPn � � �P2P1s�.

• For any polygons P1 � � �PnXY and Y XQ1 � � �Qm,

rP1 � � �PnXY s� � rY XQ1 � � �Qms� � rP1 � � �PnQ1 � � �Qms�.

• For any triangle ABC,

rABCs �
1

2
BC � dpA,

ÐÑ
BCq.

In particular, rABCs � 0.

• For any convex quadrilateral ABCD, rABCs� and rABDs� have the same (nonzero)
sign.

• For any simple polygon P1 � � �Pn, the directed areas rPiPjPks� all have the same sign,
and it is the same as the sign of rP1 � � �Pns�. (This follows from the previous parts of
this Fact; do you see how?)

For P1 � � �Pn a convex polygon, we call the sign of rP1 � � �Pns� the orientation of P1 � � �Pn;
we refer to positive and negative orientations also as “counterclockwise” and “clockwise”,
respectively.

1.5 Areas of circles and measures of arcs

Everything we have discussed so far was described purely in terms of basic algebraic opera-
tions on the real numbers: addition, subtraction, multiplication, division and square roots.
The area of a circle and the measure of an arc cannot be described quite so simply; one must
use the least upper bound property.

Given a circle ω, the area of the circle is defined to be the least upper bound of the set of
areas of convex polygons P1 � � �Pn with vertices on ω; note that this set is indeed bounded,
for instance by the area of any square containing ω in its interior.
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Fact 1.5.1. • There exists a constant π such that the area of a circle of radius r is equal
to πr2.

• The area of a circle is also equal to the greatest lower bound of the set of areas of convex
polygons P1 � � �Pn containing ω in its interior.

Next we consider arcs and their measures. Given three distinct points A, B, C on a circle
ω, we define the arc �ABC as the set of points D P ω such that the quadrilateral ABCD is
not simple (including the points A, B, C). Since ω is uniquely determined by any arc, we
may unambiguously speak of the center and radius of an arc. There is a unique point M
on �ABC with AM � MC (namely the intersection of �ABC with the perpendicular bisector

of AC), called the midpoint of �ABC. If the line
ÐÑ
AB passes through the center of ω, we call�ABC a semicircle.

The polygon P1 � � �Pn is said to be inscribed in �ABC or circle ω if P1, . . . , Pn all lie on�ABC. We also say that the polygon is circumscribed by the arc/circle. A polygon which can
be circumscribed by some circle is said to be cyclic, and the unique circle which circumscribes
it is called its circumcircle (or circumscribed circle) of the polygon; points which form the
vertices of a cyclic polygon are said to be concyclic. The center and radius of the circumcircle
of a cyclic polygon are referred to as the circumcenter and circumradius, respectively, of
the polygon. Note that any triangle is cyclic, so we may speak of the circumcenter and
circumradius of a triangle without any further assumptions.

To define the measure of an arc, we use the following fact.

Fact 1.5.2. Let A and B be points on a circle ω with center O and radius r, and let the
lines tangent to ω at A and B meet at C. Then

2rOABs

r2
¤

AB

r
¤

2rOACBs

r2
.

It follows that the least upper bound of the perimeters of polygons inscribed in an
arc/circle of radius r exists, and is equal to 1

r
times the least upper bound of the areas of

polygons inscribed in the arc/circle. We call this quantity the circumference of the arc/circle
and call 1

r
times the circumference the measure of the arc/circle, denoted mp�ABCq. In par-

ticular, by the previous fact, the measure of any circle is equal to 2π.

Fact 1.5.3. If ABCDE is a convex polygon inscribed in a circle ω, then the measure of�ACE is equal to the sum of the measures of �ABC and �CDE.

As with areas, it is sometimes convenient to give arcs a signed measure. For �ABC not a
semicircle, we define the signed measure of the arc �ABC, denote m�p�ABCq, to be mp�ABCq
times the sign of rABCs�. We regard this as a quantity “modulo 2π”, i.e., only well-defined
up to adding multiples of 2π. (If �ABC is a semicircle, then π and �π differ by a multiple of
2π, so we may declare either one to be m�p�ABCq.) Despite the ambiguity thus introduced,
it still makes sense to add, subtract and test for equality signed measures, and one has the
following nice properties which are most definitely false for the ordinary measure.
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• The signed measure m�p�ABCq depends only on A, C and the circle on which �ABC
lies.

• If A, B, C,D, E lie on a circle, then m�p�ABCq �m�p�CDEq � m�p�ACEq.

1.6 Angles and the danger of configuration dependence

Given distinct points A, B, C in the plane, choose a circle ω centered at B, let A1 and C 1

be the intersections of the rays
ÝÑ
BA and

ÝÝÑ
BC, respectively, with ω, and let B1 be any point

on ω such that the quadrilateral BA1B1C 1 is convex. Then mp�A1B1C 1q is independent of the

choices of ω and B1; we call it the angle measure, or simply the angle, between the rays
ÝÑ
BA

and
ÝÝÑ
BC and denote it =ABC. We also use “angle” to describe the set consisting of the

union of the two rays
ÝÑ
BA and

ÝÝÑ
BC, and use the symbol =ABC for this set as well.

The implied unit of angle measure above is called the radian. By tradition, we also
measure angles in units of degrees , where 180� equal π radians.

We say that the angle =ABC is acute, right, obtuse according to whether its measure
is less than, equal to, or greater than π{2 (or in degrees, 90�).

The interior of the angle =ABC consists of all points D such that the quadrilateral
ABCD is convex. The set of points D in the interior of =ABC such that =ABD � =DBC,
together with B itself, form a ray; that ray is called the internal angle bisector of =ABC.
The same term is applied to the line containing that ray. The line perpendicular to the
internal angle bisector is called the external angle bisector of=ABC. We refer to the internal
and external angle bisectors of =ABC also as the internal and external angle bisectors,
respectively, of the triangle 4ABC at the vertex B.

Fact 1.6.1. • If ABC is a triangle, then =ABC �=BCA�=CAB � π.

• If ABCD is a convex quadrilateral, then ABCD is cyclic if and only if =ABC �
π �=CDA if and only if =ABD � =ACD.

• If ABCD is a convex quadrilateral and ω is the circumcircle of 4ABC, then
ÐÑ
AD is

tangent to ω at A if and only if =ABC � =DAC.

In the Elements, all quantities are treated as unsigned, as was necessary at the time in
the absence of negative numbers. (Indeed, Euclid did not attach any numbers to geometrical
figures; rather, he would conflate a segment with its length, a polygon with its area, and
so on.) As we have seen, this approach makes certain statements dependent on relative
positions of points. It is common to not worry much about such issues, but one actually has
to be careful. As an example, we offer the following “pseudotheorem” and corresponding
“pseudoproof” from [14]; we encourage the reader to concoct other plausible pseudotheorems
and pseudoproofs!

Pseudotheorem. All triangles are isosceles.
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Figure 1.6.1: The Pseudotheorem.

Pseudoproof. Let 4ABC be a triangle, and let O be the intersection of the internal angle
bisector of A with the perpendicular bisector of BC, as in Figure 1.6.1.

Let D, Q, R be the feet of perpendiculars from O to
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB, respectively. By

symmetry across OD, OB � OC, while by symmetry across AO, AQ � AR and OQ � OR.
Now the right triangles4ORB and4OQC have equal legs OR � OQ and equal hypotenuses
OB � OC, so they are congruent, giving RB � QC. Finally, we conclude

AB � AR�RB � AQ�QC � AC,

and hence the triangle 4ABC is isosceles.

Problems for Section 1.6

1. Where is the error in the proof of the Pseudotheorem?

1.7 Directed angle measures

To avoid the problems that led to the Pseudotheorem, it will be useful to have a sign
convention for angles.7 The obvious choice would be to regard angle measures as being
defined modulo 2π, but it turns out better to regard them modulo π, as we shall see.

Given three distinct points A, B, C, define the directed angle measure, or simply the
directed angle, >ABC as the signed arc measure m�p�A1B1C 1q as a quantity modulo π.

Yes, you read correctly: although the signed arc measure is well-defined up to multiples
of 2π, we regard the directed angle measure as only well-defined up to adding multiples of
π. One consequence is that we can unambiguously define the directed angle (modulo π)
between two lines `1 and `2 as follows. If `1 and `2 are parallel, declare the directed angle
>p`1, `2q to be zero. Otherwise, declare >p`1, `2q � >ABC for A a point on `1 but not on
`2, B the intersection of `1 and `2, and C a point on `2 not on `1.

Note that to avert some confusion, we will systemically distinguish between the words
“signed”, referring to arc measures modulo 2π, and “directed”, referring to angle measures
modulo π, even though in common usage these two terms might be interchanged. Such an
interchange would be dangerous for us!

One can now verify the following rules of “directed angle arithmetic”, all of which are
independent of configuration.

Fact 1.7.1. Let A, B, C,D, O, P denote distinct points in the plane.

1. >ABC � �>CBA.

7This sign convention would seem to be rather old, but we do not have precise information about its
origins.
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2. >APB �>BPC � >APC.

3. >ABC � >ABD if and only if B, C, D are collinear. In particular, >ABC � 0 if
and only if A, B, C are collinear.

4. >ABD � >ACD if and only if A, B, C,D are concyclic.

5. >ABC � >ACD if and only if CD is tangent to the circle passing through A, B, C.

6. >ABC �>BCA�>CAB � 0.

7. 2>ABC � >AOC if A, B, C lie on a circle centered at O.

8. >ABC equals 1
2

of the measure of the arc �AC of the circumcircle of ABC.

For example, if A, B, C,D lie on a circle in that order, then we have =ABD � =ACD
as undirected angles. On the other hand, if they lie on a circle in the order A, B, D,C, then
we have =ABD � π �=DCA, so in terms of directed angles

>ABD � π �>DCA � �>DCA � >ADC.

It should be noted that this coincidence is a principal reason why one works modulo π and
not 2π! (The other principal reason is of course so that collinear points always make an
angle of 0.)

The last two assertions in Fact 1.7.1 ought to raise some eyebrows, because division by
2 is a dangerous thing when working modulo π. To be precise, the equation 2=A � 2=B
of directed angles does not imply that =A � =B, for the possibility also exists that =A �
=B � π{2. (Those familiar with elementary number theory will recognize an analogous
situation: one cannot divide by 2 in the congruence 2a � 2b pmod cq when c is even.) This
explains why we do not write >ABC � 1

2
>AOC: the latter expression is not well-defined.

On the other hand, directed arcs can be unambiguously measured mod 2π, so dividing a
signed arc measure by 2 gives a directed angle measure mod π.

If all of this seems too much to worry about, do not lose hope; the conventions are easily
learned with a little practice. We will illustrate this in Section 4.2.
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Chapter 2

Algebraic methods

Since our very construction of the Euclidean plane was rooted in the algebra of the coordinate
plane, it is clear that algebraic techniques have something to say about Euclidean geometry;
indeed, we have already encountered a few problems that are naturally treated in terms of
coordinates, and we will encounter more later (e.g., Theorem 6.5.1). However, coordinatizing
a typical problem in Euclidean geometry leads to a complicated mess; one typically succeeds
more easily by adopting more high-level techniques.1

We will spend much of the second part of the book introducing so-called “synthetic”
techniques; for now, we introduce some techniques which, while still rooted in algebra, offer
some advantages over blind coordinate manipulations.

2.1 Trigonometry

Define the points O � p0, 0q and P � p1, 0q. Given a signed angle measure θ (modulo
2π), let Q be the point on the circle of radius 1 centered at O such that the signed angle
measure of =POQ is equal to θ. Let cos θ and sin θ denote the x-coordinate and y-coordinate,
respectively, of Q; these define the cosine and sine. By the distance formula, we have the
identity

cos2 θ � sin2 θ � 1.

Figure 2.1.1: Definition of the trigonometric functions.

Also define the tangent, secant, cosecant, and cotangent functions as follows (when these
expressions are well-defined):

tan θ �
sin θ

cos θ
, sec θ �

1

cos θ
, csc θ �

1

sin θ
, cot θ �

cos θ

sin θ
.

1An analogous relationship in computer science is that between a processor-level machine language and
a high-level programming language like C++, Java, or Perl.
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We do not intend to conduct here a full course in trigonometry; we will content ourselves
to summarizing the important facts and provide a few problems where trigonometry can or
must be employed. Throughout the following discussion, let ABC denote a triangle, write
a � BC, b � CA, c � AB, and write A, B, C for the measures of (undirected) angles =CAB,
=ABC, =BCA, respectively. Let s � pa� b� cq{2 denote the semiperimeter of 4ABC.

Fact 2.1.1 (Law of Sines). The area of 4ABC equals 1
2
ab sin C. In particular,

a

sin A
�

b

sin B
�

c

sin C
.

Fact 2.1.2 (Extended Law of Sines). If R is the circumradius of 4ABC, then BC �
2R sin A.

Fact 2.1.3 (Law of Cosines). In 4ABC,

c2 � a2 � b2 � 2ab cos C.

Fact 2.1.4 (Addition formulae). For any real numbers α and β,

cospα� βq � cos α cos β � sin α sin β

cospα� βq � cos α cos β � sin α sin β

sinpα� βq � sin α cos β � cos α sin β

sinpα� βq � sin α cos β � cos α sin β.

Using the addition formulae, one can convert products of sines and cosines to sums, and
vice versa.

Fact 2.1.5 (Sum-to-product formulae).

sin α� sin β � 2 sin
α� β

2
cos

α� β

2

sin α� sin β � 2 cos
α� β

2
sin

α� β

2

cos α� cos β � 2 sin
α� β

2
cos

α� β

2

cos α� cos β � �2 sin
α� β

2
sin

α� β

2
.

In particular, one has the double and half-angle formulae.

Fact 2.1.6 (Double-angle formulae).

sin 2α � 2 sin α cos α

cos 2α � 2 cos2 α� 1 � 1� 2 sin2 α

tan 2α �
2 tan α

1� tan2 α
.
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Fact 2.1.7 (Half-angle formulae).

sin
α

2
� �

c
1� cos α

2

cos
α

2
� �

c
1� cos α

2

tan
α

2
� csc α� cot α.

The half-angle formulae take a convenient form for triangles.

Fact 2.1.8. In 4ABC,

sin
C

2
�

c
ps� aqps� bq

ab

cos
C

2
�

c
sps� cq

ab
.

It may be helpful at times to express certain other quantities associated with a triangle
in terms of the angles.

Fact 2.1.9. If 4ABC has inradius r and circumradius R, then

r � 4R sin
A

2
sin

B

2
sin

C

2
.

We leave the construction of other such formulae to the reader.

Problems for Section 2.1

1. For any triangle ABC, prove that tan A� tan B� tan C � tan A tan B tan C and that
cot A{2� cot B{2� cot C{2 � cot A{2 cot B{2 cot C{2.

2. Show that if none of the angles of a convex quadrilateral ABCD is a right angle, then

tan A� tan B � tan C � tan D

tan A tan B tan C tan D
� cot A� cot B � cot C � cot D.

3. Find a formula for the area of a triangle in terms of two angles and the side opposite
the third angle. More generally, given any data that uniquely determines a triangle,
one can find an area formula in terms of that data. Some of these can be found in
Fact 7.9.1; can you come up with some others?

4. (USAMO 1996/5) Triangle ABC has the following property: there is an interior point
P such that =PAB � 10�, =PBA � 20�, =PCA � 30� and =PAC � 40�. Prove that
triangle ABC is isosceles. (For an added challenge, find a non-trigonometric solution!)

5. (IMO 1985/1) A circle has center on the side AB of a cyclic quadrilateral ABCD. The
other three sides are tangent to the circle. Prove that AD �DC � AB.

17



2.2 Vectors

A vector in the plane can be defined either as an arrow, where addition of arrows proceeds
by the “tip-to-tail” rule illustrated in Figure 2.2.1, or as an ordered pair px, yq recording the
difference in the x and y coordinates between the tip and the tail. Vectors in a Euclidean
space of three or more dimensions may be defined similarly.

Figure 2.2.1: Vector addition.

It is important to remember that a vector is not a point, but rather the “difference of
two points”; it encodes relative, not absolute, position. In practice, however, one chooses a
point as the origin and identifies a point with the vector from the origin to that point. (In
effect, one puts the tails of all of the arrows in one place.)

The standard operations on vectors include addition and subtraction, multiplication by
real numbers (positive, negative or zero), and the dot product, defined geometrically as

~A � ~B � ‖ ~A‖ � ‖ ~B‖ cos=AOB,

where O is the origin, and in coordinates as

pax, ayq � pbx, byq � axbx � ayby.

The key fact here is that ~A � ~B � 0 if and only if ~A and ~B are perpendicular.
A more exotic operation is the cross product, which is defined for a pair of vectors in

three-dimensional space as follows:

pax, ay, azq � pbx, by, bzq � paybz � azby, azbx � axbz, axby � aybxq.

Geometrically speaking, ~A� ~B is perpendicular to both ~A and ~B and has length

‖ ~A� ~B‖ � ‖ ~A‖ � ‖ ~B‖ sin=AOB.

This length equals the area of the parallelogram with vertices 0, ~A, ~A � ~B, ~B, or twice the
area of the triangle with vertices 0, ~A, ~B. The sign ambiguity can be resolved by the right-
hand rule (see Figure 2.2.2): if you point the fingers of your right hand along ~A, then swing

them toward ~B, your thumb points in the direction of ~A� ~B.

Figure 2.2.2: The right-hand rule.

Fact 2.2.1. The following identities hold:

1. (Triple scalar product identity) ~A � p ~B � ~Cq � ~B � p~C � ~Aq � ~C � p ~A� ~Bq. (Moreover,

this quantity equals the volume of a parallelepiped with edges ~A, ~B, ~C, although we did
not rigorously define either volumes or parallelepipeds.)
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2. (Triple cross product identity) ~A� p ~B � ~Cq � p~C � ~Aq ~B � p ~B � ~Aq~C.

Problems for Section 2.2

1. (Romania, 1997) Let ABCDEF be a convex hexagon, and let P �
ÐÑ
AB X

ÐÑ
CD,Q �

ÐÑ
CDX

ÐÑ
EF, R �

ÐÑ
EF X

ÐÑ
AB, S �

ÐÑ
BC X

ÐÑ
DE, T �

ÐÑ
DE X

ÐÑ
FA, U �

ÐÑ
FAX

ÐÑ
BC. Prove that

PQ

CD
�

QR

EF
�

RP

AB
if and only if

ST

DE
�

TU

FA
�

US

BC
.

2. (Răzvan Gelca) Let ABCD be a convex quadrilateral and O � AC X BD. Let M, N
be points on AB so that AM � MN � NB, and let P, Q be points on CD so that
CP � PQ � QD. Show that triangles 4MOP and 4NOQ have the same area.

3. (MOP 1996) Let ABCDE be a convex pentagon, and let F, G, H, I, J be the respec-
tive midpoints of CD,DE,EA, AB, BC. If AF, BG,CH, DI pass through a common
point, show that EJ also passes through this point.

4. (Austria-Poland, 1979) Let A, B, C,D be points in space, let M be the midpoint of
AC, and let N be the midpoint of BD. Prove that

4MN2 � AB2 �BC2 � CD2 �DA2 � AC2 �BD2.

2.3 Complex numbers

The set of complex numbers consists of the expressions of the form a�bi for a, b real numbers,
added and multiplied according to the rules

pa� biq � pc� diq � pa� cq � pb� dqi

pa� biq � pc� diq � pac� bdq � pad� bcqi.

We identify the real number a with the complex number a � 0i, and we write bi for the
complex number 0� bi. In particular, the complex number i � 1i is a square root of �1.

One uses complex numbers in Euclidean geometry by identifying a point with Cartesian
coordinates px, yq with the complex number x � yi. This represents an extension of vector
techniques, incorporating a convenient interpretation of angles (and of similarity transfor-
mations; see Section 3.4).

Another interesting use of complex numbers is to prove inequalities. This use exploits
the fact that the magnitude

|a� bi| �
`

a2 � b2

is multiplicative:
|pa� biq � pc� diq| � |a� bi| � |c� di|.

Consider the following example (compare with Problem 10.3.9).
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Theorem 2.3.1 (Ptolemy’s inequality). Let A, B, C,D be four points in the plane. Then

AC �BD ¤ AB � CD �BC �DA,

with equality if and only if the quadrilateral ABCD is convex (or degenerate) and cyclic.

Proof. Regard A, B, C,D as complex numbers; then we have an identity

pA� CqpB �Dq � pA�BqpC �Dq � pB � CqpA�Dq.

However, the magnitude of pA � CqpB � Dq is precisely the product of the lengths of the
segments AC and BD, and likewise for the other terms. Thus the desired inequality is
simply the triangle inequality applied to these three quantities! (The equality condition is
left as an exercise.)

Although we will not have use of it for a while (not until Section 11.7), we mention now
an important, highly nontrivial fact about complex numbers.

Theorem 2.3.2 (Fundamental theorem of algebra). For every polynomial P pzq � anz
n �

� � � � a0 with an, . . . , a0 complex numbers, and an, . . . , a1 not all zero, there exists a complex
number z such that P pzq � 0.

This theorem is traditionally attributed to (Johann) Carl Friedrich Gauss2 (1777-1855),
who gave the first proof (and several in addition) that would pass modern standards of
rigor. However, a correct proof (which relies on the existence of splitting fields, a concept
unavailable at the time) had already been sketched by Leonhard Euler (1707–1783) .

Problems for Section 2.3

1. Prove that x, y, z lie at the corners of an equilateral triangle if and only if either
x� ωy � ω2z � 0 or x� ωz � ω2y � 0, where ω � e2πi{3.

2. Construct equilateral triangles externally (internally) on the sides of an arbitrary tri-
angle 4ABC. Prove that the circumcenters of these three triangles form another
equilateral triangle. This triangle is known as the inner (outer) Napoleon3 triangle of
4ABC.

3. Let P, Q, R, S be the circumcenters of squares constructed externally on sides AB, BC,
CD, DA, respectively, of a convex quadrilateral ABCD. Show that the segments PR
and QS are perpendicular to each other and equal in length.

4. Let ABCD be a convex quadrilateral. Construct squares CDKL and ABMN exter-
nally on sides AB and CD. Show that if the midpoints of AC, BD, KM,NL do not
coincide, then they form a square.

2Note that in German, “Gauss” is sometimes spelled “Gauß”. That last character is not a beta, but
rather an “s-zed”, a ligature of the letters “s” and “z”.

3Yes, that’s French emperor Napoleon Bonaparte (1769–1821), though it’s not clear how his name came
to be attached to this result.

20



5. (IMO 1977/1) Equilateral triangles4ABK,4BCL,4CDM ,4DAN are constructed
inside the square ABCD. Prove that the midpoints of the four segments KL, LM ,
MN , NK and the midpoints of the eight segments AK, BK, BL,CL, CM, DM ,
DN,AN are the twelve vertices of a regular dodecagon. (Nowadays the IMO tends to
avoid geometry problems such as this one, which have no free parameters, but they
are relatively common in single-answer contests such as ARML.)

6. Given a point P on a circle and the vertices A1, A2, . . . , An of an inscribed regular
n-gon, prove that:

1. PA2
1 � PA2

2 � � � � � PA2
n is a constant (independent of P ).

2. PA4
1 � PA4

2 � � � � � PA4
n is a constant (independent of P ).

7. (China, 1998) Let P be an arbitrary point in the plane of triangle 4ABC with side
lengths BC � a, CA � b, AB � c, and put PA � x, PB � y, PC � z. Prove that

ayz � bzx� cxy ¥ abc,

with equality if and only if P is the circumcenter of 4ABC.

2.4 Barycentric coordinates and mass points

Given a triangle 4ABC and a point P , we define the barycentric coordinates4 of P with
respect to ABC as the triple �

rPBCs�
rABCs�

,
rAPCs�
rABCs�

,
rABP s�
rABCs�



of real numbers. Note that these numbers always add up to 1, and that they are all positive
if and only if P lies in the interior of 4ABC.

A related concept is that of “mass points”. A mass point consists of a pair pP, rq, where
P is a point and r is a positive real number. These points may be “added” as follows:

ppx1, y1q, r1q � px2, y2q, r2q �

��
r1x1 � r2x2

r1 � r2

,
r1y1 � r2y2

r1 � r2



, r1 � r2



.

In terms of vectors, we have

pP1, r1q � pP2, r2q �
r1

r1 � r2

P1 �
r2

r1 � r2

P2.

In terms of physics, the location of the sum of two mass points is the “center of mass” of
a pair of appropriate masses at the two points. This addition law is associative, so we may
likewise add three or more mass points unambiguously.

The relation of mass points to barycentric coordinates is as follows.

4The word “barycentric” comes from the Greek “barys”, meaning “heavy”; it is cognate to the term
“baryon” in particle physics.
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Fact 2.4.1. Let 4ABC be a triangle. Then for any positive real numbers r1, r2, r3, the sum
of the mass points pA, r1q, pB, r2q, pC, r3q is located at the point with barycentric coordinates�

r1

r1 � r2 � r3

,
r2

r1 � r2 � r3

,
r3

r1 � r2 � r3



.
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Chapter 3

Transformations

In geometry, it is often useful to study transformations of the plane (i.e. functions mapping
the plane to itself) preserving certain properties. In fact, Felix Klein (1849-1925) went so
far as to define “geometry” as the study of properties invariant under a particular set of
transformations!

In this section we describe some fundamental transformations and how they interact with
properties of “figures” in the plane. Here and throughout, by a figure we simply mean a set
of points in the plane. Also, we follow standard usage in mathematical English and refer to
a function also as a “map”.

3.1 Congruence and rigid motions

Let F1 and F2 be two figures and suppose f : F1 Ñ F2 is a bijection (one-to-one correspon-
dence). We say that F1 and F2 are congruent (via f), and write F1 � F2, if we have an
equality of distances PQ � fpP qfpQq for all P, Q P F1. When F1 and F2 are polygons with
the same number of vertices and f is not specified, we assume it is the map that takes the
vertices of F1 to the vertices of F2 in the order that they are listed. For instance, the fact
that 4ABC � 4DEF are congruent means that AB � DE,BC � EF, CA � FD.

A rigid motion of the Euclidean plane is a map from the plane to itself which preserves
distances; that is, if P maps to P 1 and Q to Q1, then we have PQ � P 1Q1. In other words,
a rigid motion maps every figure to a congruent figure. Here is a list of examples of rigid
motions (which we will soon find to be exhaustive; see Theorem 3.1.2):

• Translation: each point moves a fixed distance in a fixed direction, so that PQQ1P 1 is
always a parallelogram.

• Rotation with center O and angle θ: each point P maps to the point P 1 such that
OP � OP 1 and =POP 1 � θ, where the angle is signed (i.e., measured modulo 2π, not
π). We refer to a rotation with angle π also as a half-turn.

• Reflection through the line `: each point P maps to the point P 1 such that ` is the
perpendicular bisector of PP 1.
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• Glide reflection along the line `: reflection through ` followed by a translation along `.

Theorem 3.1.1. Given two congruent figures, each not contained in any line, there is a
unique rigid motion that maps one onto the other (matching corresponding points).

Note that the rigid motion may not be unique if it is not required to match corresponding
points between the two figures: for instance, a regular polygon is mapped to itself by more
than one rotation (as for that matter is a circle).

Proof. We first address the uniqueness. If there were two rigid motions carrying the first
figure to the second, then composing one with the inverse of the other would yield a nontrivial
rigid motion leaving one entire figure in place. By assumption, however, this figure contains
three noncollinear points A, B, C, and a point P is uniquely determined by its distances to
these three points (Fact 1.2.6), so every point is fixed by the rigid motion, a contradiction.
Thus the motion is unique if it exists.

Now we address existence. let A, B, C be three noncollinear points of the first figure, and
A1, B1, C 1 the corresponding points of the second figure. There exists a translation mapping
A to A1; following that with a suitable rotation (since AB � A1B1), we can ensure that B

also maps to B1. Now we claim C maps either to C 1 or to its reflection across
ÐÝÑ
A1B1; in other

words, given two points A, B and a point C not on
ÐÑ
AB, C is determined up to reflection

across
ÐÑ
AB by the distances AC and BC. This holds because this data fixes C to lie on two

distinct circles, which can only intersect in two points (Fact 1.2.4).
Now if P is any point of the first figure, then P is uniquely determined by the distances

AP, BP,CP (again by Fact 1.2.6), and so it must map to the corresponding point of the
second figure. This completes the proof of existence.

Note that rigid motions carry convex polygons to convex polygons. It follows that a rigid
motion either preserves the orientation of all convex polygons, or reverses the orientation
of all convex polygons. We say two congruent figures are directly congruent if the unique
rigid motion taking one to the other (provided by Theorem 3.1) preserves orientations, and
oppositely congruent otherwise.

Theorem 3.1.2. A rigid motion preserves orientations if and only if it is a translation or
a rotation. A rigid motion reverses orientations if and only if it is a reflection or a glide
reflection.

Proof. Let ABC be a triangle carried to the triangle A1B1C 1 under the rigid motion. First
suppose the rigid motion preserves orientations; by the uniqueness assertion in Theorem 3.1,
it suffices to exhibit either a translation or a rotation carrying 4ABC to 4A1B1C 1. If
the perpendicular bisectors of AA1 and BB1 are parallel, then ABB1A1 is a parallelogram,
so there is a translation taking A to A1 and B to B1. Otherwise, let these perpendicular
bisectors meet at O. Draw the circle through B and B1 centered at O; there are (at most)
two points on this circle whose distance to A1 is the length AB. One point is the reflection of
B across the perpendicular bisector of AA1; by our assumption, this cannot equal B1. Thus
B1 is the other point, which is the image of B under the rotation about O taking B to B1.
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Figure 3.1.1: Proof of Theorem 3.1.2.

Next suppose the rigid motion reverses orientations; again by Theorem 3.1, it suffices
to exhibit either a reflection or a glide reflection carrying 4ABC to 4A1B1C 1. The lines

through which
ÐÑ
AB reflects to a line parallel to

ÐÝÑ
A1B1 form two perpendicular families of

parallel lines. In each family there is one line passing through the midpoint of AA1; the glide
reflection through this line taking A to A1 takes B either to B1 or to its half-turn about A1.
In the latter case, switching to the other family gives a glide reflection taking B to B1. As
in the first case, C automatically goes to C 1, and we are done.

In particular, the composition of two rotations is either a rotation or translation. In fact,
one can say more.

Fact 3.1.3. The composition of a rotation of angle θ1 with a rotation of angle θ2 is a rotation
of angle θ1 � θ2 if this is not a multiple of 2π, and a translation otherwise.

On the other hand, given two rotations, it is not obvious where the center of their
composition is; in particular, it generally depends on the order of the rotations. (In the
language of abstract algebra, the group of rigid motions is not commutative.)

Fact 3.1.4. Let 4ABC and 4A1B1C 1 be two triangles. The following conditions are all
equivalent to 4ABC � 4A1B1C 1.

(a) (SSS criterion) We have AB � A1B1, BC � B1C 1, CA � C 1A1 (this equivalence is by
definition).

(b) (SAS criterion) We have AB � A1B1, BC � B1C 1, and =ABC � =A1B1C 1.

(c) (ASA criterion) We have AB � A1B1, and all three (or even any two) of =ABC,
=BCA, =CAB are equal to the corresponding angles =A1B1C 1, =B1C 1A1, =C 1A1B1.

Problems for Section 3.1

1. Show that there is no “SSA criterion” for congruence, by exhibiting two noncongruent
triangles 4ABC,4A1B1C 1 with AB � A1B1, BC � B1C 1, =BCA � =B1C 1A1.

2. (MOP 1997) Consider a triangle ABC with AB � AC, and points M and N on AB

and AC, respectively. The lines
ÐÑ
BN and

ÐÝÑ
CM intersect at P . Prove that

ÐÝÑ
MN and

ÐÑ
BC

are parallel if and only if =APM � =APN .

3. (Butterfly theorem) Let A, B, C,D be points occurring in that order on circle ω and
put P � ACXBD. Let EF be a chord of ω passing through P , and put Q � BCXEF
and R � DAX EF . Then PQ � PR.
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4. (IMO 1986/2) A triangle A1A2A3 and a point P0 are given in the plane. We define
As � As�3 for all s ¥ 4. We construct a sequence of points P1, P2, P3, . . . such that
Pk�1 is the image of Pk under rotation with center Ak�1 through angle 120� clockwise
(for k � 0, 1, 2, . . . ). Prove that if P1986 � P0, then 4A1A2A3 is equilateral.

5. (MOP 1996) Let AB1C1, AB2C2, AB3C3 be directly congruent equilateral triangles.
Prove that the pairwise intersections of the circumcircles of triangles AB1C2, AB2C3,
AB3C1 form an equilateral triangle congruent to the first three.

3.2 Similarity and homotheties

Let F1 and F2 be two figures and suppose f : F1 Ñ F2 is a bijection. We say that F1 and F2

are similar (via f), and write F1 � F2, if there exists a positive real number c such that for
all P, Q P F1, fpP qfpQq � cPQ. Again, when F1 and F2 are polygons with the same number
of vertices and f is not specified, we assume it is the map that takes the vertices of F1 to the
vertices of F2 in the order that they are listed. For instance, the fact that 4ABC � 4DEF
means that AB{DE � BC{EF � CA{FD.

Fact 3.2.1. Let 4ABC and 4A1B1C 1 be two triangles. The following conditions are all
equivalent to 4ABC � 4A1B1C 1.

(a) (SSS criterion) We have AB{A1B1 � BC{B1C 1 � CA{C 1A1 (this equivalence is by
definition).

(b) (SAS criterion) We have AB{A1B1 � BC{B1C 1, and =ABC � =A1B1C 1.

(c) (AA criterion) All three (or even any two) of =ABC, =BCA, =CAB are equal to the
corresponding angles =A1B1C 1, =B1C 1A1, =C 1A1B1.

A similarity of the Euclidean plane is a map from the plane to itself for which there
exists a positive real number c such that whenever P maps to P 1 and Q to Q1, we have
P 1Q1 � cPQ; the constant c is called the ratio of similitude of the similarity. Note that a
rigid motion is precisely a similarity with ratio of similitude 1. By imitating the proof of
Theorem 3.1, we have the following result.

Fact 3.2.2. Given two similar figures, each not contained in a line, there is a unique simi-
larity that maps one onto the other (matching corresponding points).

As for rigid motions, a similarity either preserves the orientation of all convex polygons,
or reverses the orientation of all convex polygons. We say two similar figures are directly
similar if the unique similarity taking one to the other (provided by Fact 3.2.2) preserves
orientations, and oppositely similar otherwise.

In the spirit of Theorem 3.1.2, we will shortly give a classification of similarities (The-
orem 3.4.1); before doing so, however, we introduce a special class of similarities which by
themselves are already surprisingly useful. Given a point O and a nonzero real number r,
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the homothety (or dilation or dilatation ) with center O and ratio r maps each point P to

the point P 1 on the line
ÐÑ
OP such that the signed ratio of lengths OP 1{OP is equal to r.

Note that r is allowed to be negative; in particular, a homothety of ratio �1 is simply a
half-turn.

Figure 3.2.1: A homothety.

Homotheties have the property that they map every segment of a figure to a parallel
segment. Aside from translations (which might be thought of as degenerate homotheties
with center “at infinity”), this property characterizes homotheties; the following theorem is
often useful as a concurrence criterion.

Fact 3.2.3. Two directly similar but not congruent figures with corresponding sides parallel

are homothetic. In particular, the lines
ÐÑ
AA1, where A and A1 are corresponding points, all

pass through a common point.

As for rotations, we conclude that the composition of two homotheties is a homothety,
though again it is less than obvious where the center is!

Problems for Section 3.2

1. Given a triangle ABC, construct (with straightedge and compass) a square with one
vertex on AB, one vertex on CA, and two (adjacent) vertices on BC.

2. (USAMO 1992/4) Chords AA1, BB1, CC 1 of a sphere meet at an interior point P but
are not contained in a plane. The sphere through A, B, C, P is tangent to the sphere
through A1, B1, C 1, P . Prove that AA1 � BB1 � CC 1.

3. (Putnam 1996/A-2) Let C1 and C2 be circles whose centers are 10 units apart, and
whose radii are 1 and 3. Find, with proof, the locus of all points M for which there
exists points X on C1 and Y on C2 such that M is the midpoint of the line segment
XY .

4. Given three nonintersecting circles, draw the intersection of the external tangents to
each pair of the circles. Show that these three points are collinear.

5. (Russia, 2003) Let ABC be a triangle with AB � AC. Point E is such that AE � BE

and
ÐÑ
BE K

ÐÑ
BC. Point F is such that AF � CF and

ÐÑ
CF K

ÐÑ
BC. Let D be the point

on line
ÐÑ
BC such that

ÐÑ
AD is tangent to the circumcircle of triangle ABC. Prove that

D, E, F are collinear.
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3.3 Spiral similarities

Let P be a point, let θ be a signed angle measure (i.e., measured modulo 2π) and let r be
a nonzero real number. The spiral similarity of angle θ and ratio r centered at P consists
of a homothety of ratio r centered at P followed by a rotation of angle θ centered at P .
(The order of these operations do not matter; one easy way to see this is to express both
operations in terms of complex numbers.) In particular, a spiral similarity is the composition
of a similarity and a rigid motion, and hence is a similarity.

Problems for Section 3.3

1. (USAMO 1978/2) The squares ABCD and A1B1C 1D1 represent maps of the same
region, drawn to different scales and superimposed. Prove that there is only one point
O on the small map which lies directly over point O1 of the large map such that O
and O1 represent the same point of the country. Also, give a Euclidean construction
(straightedge and compass) for O.

2. (MOP 1998) Let ABCDEF be a cyclic hexagon with AB � CD � EF . Prove that
the intersections of AC with BD, of CE with DF , and of EA with FB form a triangle
similar to 4BDF .

3. Let C1, C2, C3 be circles such that C1 and C2 meet at distinct points A and B, C2 and
C3 meet at distinct points C and D, and C3 and C1 meet at distinct points E and F .
Let P1 be an arbitrary point on C1, and define points P2, . . . , P7 as follows:

P2 is the second intersection of line
ÐÑ
P1A with C2;

P3 is the second intersection of line
ÐÝÑ
P2C with C3;

P4 is the second intersection of line
ÐÝÑ
P3E with C1;

P5 is the second intersection of line
ÐÝÑ
P1B with C2;

P6 is the second intersection of line
ÐÝÑ
P2D with C3;

P7 is the second intersection of line
ÐÝÑ
P3F with C1.

Prove that P7 � P1.

3.4 Complex numbers and the classification of similar-

ities

One can imagine generating similarities in a rather complicated fashion, e.g., take a homo-
thety about one center followed by a rotation about a different center. It turns out that this
does not really yield anything new; this can be seen most easily by interpreting similarities
in terms of complex numbers.
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Theorem 3.4.1. Every orientation-preserving similarity is either a translation or a spiral
similarity.

Proof. First we show that every orientation-preserving similarity can be expressed in terms
of homothety, translation, and rotation. Let A and B be two points with images C and
D. If we perform a homothety about A of ratio CD{AB, then a translation mapping A
to C, then a suitable rotation, we get another similarity mapping A and B, respectively,

to C and D. On the other hand, if P is any point not on the line
ÐÑ
AB, and Q and Q1 are

its images under the original similarity and the new similarity, then the triangles 4ABP ,
4CDQ, 4CDQ1 are all similar. This implies that C, Q, Q1 are collinear and that D, Q, Q1

are collinear, forcing Q � Q1. In other words, the original similarity coincides with the new
one.

The basic transformations can be expressed in terms of complex numbers as follows:

Translation by vector v z ÞÑ z � v
Homothety of ratio r, center x z ÞÑ rpz � xq � x
Rotation by angle θ, center x z ÞÑ eiθpz � xq � x

The point is that each of these maps has the form z ÞÑ az � b for some complex numbers
a, b with a � 0, and hence all orientation-preserving similarities have this form.

If a � 1, the map z ÞÑ az� b of complex numbers represents a translation by b. If a � 1,
then let t � b{p1 � aq be the unique solution of t � at � b. Then our map can be written
z ÞÑ apz � tq � t, which is clearly a spiral similarity about t.

Problems for Section 3.4

1. Let A, C,E be three points on a circle. A 60� rotation about the center of the circle
carries A, C,E to B, D, F , respectively. Prove that the triangle whose vertices are the
midpoints of BC,DE,FA is equilateral.

3.5 Affine transformations

The last type of transformation we introduce in this chapter is the most general, at the
price of preserving the least structure. However, for sheer strangeness it does not rival either
inversion (see Chapter 10) or projective transformations (see Chapter 11).

An affine transformation is a map from the plane to itself of the form

px, yq ÞÑ pax� by � c, dx� ey � fq

for some real numbers a, b, c, d, e, f with ae � bd � 0; this last condition ensures that the
map is a bijection. From the proof of Theorem 3.4.1, we see that every similarity is an affine
transformation. However, there are more exotic affine transformations, including the stretch
px, yq ÞÑ px, cyq and the shear px, yq ÞÑ px� y, yq.
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These last examples demonstrate that angles and distances do not behave predictably
under affine transformation. However, one does have the following result, as well as a partial
converse (Problem 3.5.1).

Fact 3.5.1. Affine transformations preserve collinearity of points, parallelness of lines, and
concurrence of lines. Moreover, the affine transformation

px, yq ÞÑ pax� by � c, dx� ey � fq

multiplies areas by a factor of |ae� bd|, and preserves orientation if and only if ae� bd ¡ 0.

Fact 3.5.2. Any three noncollinear points can be mapped to any three other noncollinear
points by a unique affine transformation.

As an example of the use of the affine transformation, we offer the following theorem.

Theorem 3.5.3. Let ABCDE be a convex pentagon, and let F �
ÐÑ
BCX

ÐÑ
DE, G �

ÐÑ
CDX

ÐÑ
EA,

H �
ÐÑ
DE X

ÐÑ
AB, I �

ÐÑ
EA X

ÐÑ
BC, J �

ÐÑ
AB X

ÐÑ
DE. Suppose that the areas of the triangles

4AHI,4BIJ,4CJF,4DFG,4EGH are all equal. Then the lines
ÐÑ
AF,

ÐÑ
BG,

ÐÑ
CH,

ÐÑ
DI,

ÐÑ
EJ

are all concurrent.

Figure 3.5.1: Diagram for Theorem 3.5.3.

Proof. Everything in the theorem is preserved by affine transformations, so we may place
three of the points anywhere we want. Let us assume that A, C,D form an isosceles triangle
with AC � AD and =CDA � π{5, which is to say that A, C,D are three vertices of a
regular pentagon.

Our first observation is that since 4CJF and 4DFG have equal areas, so do 4CFG
and 4FDJ , by adding the area of 4CDH to both sides. By the base-height formula, this
means GJ is parallel to CD, and similarly for the other sides. In particular, since 4ACD
was assumed to be isosceles, F lies on the internal angle bisector of =DAC, and J and C

are the reflections of G and D across
ÐÑ
AF .

We next want to show that B and E are mirror images across
ÐÑ
AF . To that end, let E 1

and H 1 be the reflections of E and H, respectively. Since the lines
ÐÑ
FC and

ÐÑ
FD are mirror

images across
ÐÑ
AF , we know that E 1 lies on

ÐÑ
BD, and similarly H 1 lies on

ÐÑ
AC. Suppose that

E 1D   BD, or equivalently that E is closer than B is to the line
ÐÑ
CD. Then we also have

DH 1   CI 1; since CJ � DG, we deduce JH 1   JI. Now it is evident that the triangle
E 1H 1J , being contained in 4BJI, has smaller area; on the other hand, it has the same area
as 4EHG, which by assumption has the same area as 4BJI, a contradiction. So we cannot
have E 1D   BD, or E 1D ¡ BD by a similar argument. We conclude E 1D � BD, i.e. B and

E are mirror images across
ÐÑ
AF .
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Figure 3.5.2: Proof of Theorem 3.5.3.

In particular, this implies that
ÐÑ
BE is parallel to

ÐÑ
CD. Since we could just as well have

put B, D, E at the vertices of an isosceles triangle, we also may conclude AC ‖ DE and so
forth.

Now let ` be the line through C parallel to
ÐÑ
AD; by the above argument, we know B is

the intersection of ` with
ÐÑ
DF . On the other hand, B is also the intersection of ` with the

line through A parallel to
ÐÑ
CF . If we move F towards A along the internal angle bisector

of =DAC, the intersection of
ÐÑ
DF with ` moves away from C, but the intersection of the

parallel to
ÐÑ
CF through A with ` moves closer to C. Hence these can only coincide for at most

one choice of F , and of course they do coincide when ABCDE is a regular pentagon. We
conclude that ABCDE is the image of a regular pentagon under an affine transformation,

which in particular implies that
ÐÑ
AF,

ÐÑ
BG,

ÐÑ
CH,

ÐÑ
DI,

ÐÑ
EJ are concurrent.

Figure 3.5.3: Proof of Theorem 3.5.3.

Some authors choose to independently speak of oblique coordinates, measured with
respect to two coordinate axes which are not necessarily perpendicular. We prefer to think
of these as the result of perfoming an affine transformation to a pair of Cartesian coordinate
axes.

Problems for Section 3.5

1. Prove that any transformation that takes collinear points to collinear points is an affine
transformation.

2. Let 4ABC be a triangle, and let X, Y, Z be points on sides BC, CA, AB, respectively,
satisfying

BX

XC
�

CY

Y A
�

AZ

ZB
� k,

where k is a given constant greater than 1. Find, in terms of k, the ratio of the area
of the triangle formed by the three segments AX, BY , CZ to the area of 4ABC.
(Compare Problem 4.1.3, which is the case k � 2.)

3. In the hexagon ABCDEF , opposite sides are equal and parallel. Prove that triangles
4ACE and 4BDF have the same area.

4. (Greece, 1996) In a triangle ABC the points D, E, Z,H, Θ are the midpoints of the
segments BC,AD, BD, ED,EZ, respectively. If I is the point of intersection of BE
and AC, and K is the point of intersection of HΘ and AC, prove that

1. AK � 3CK;
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2. HK � 3HΘ;

3. BE � 3EI;

4. the area of 4ABC is 32 times that of 4EΘH.

5. (Sweden, 1996) Through a point in the interior of a triangle with area T , draw lines
parallel to the three sides, partitioning the triangle into three triangles and three
parallelograms. Let T1, T2, T3 be the areas of the three triangles. Prove that`

T �
a

T1 �
a

T2 �
a

T3.

6. (France, 1996) Let 4ABC be a triangle. For any line ` not parallel to any side

of 4ABC, let G` be the vector average of the intersections of ` with
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB.

Determine the locus of G` as ` varies.
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Chapter 4

Tricks of the trade

We conclude our presentation of fundamentals with a chapter that highlights a small core of
basic techniques that prove useful in a large number of problems. The point is to show how
much one can accomplish even with very little advanced knowledge.

4.1 Slicing and dicing

One of the most elegant ways of establishing a geometric result is to dissect the figure into
pieces, then rearrange the pieces so that the result becomes obvious. The quintessential
example of this technique is the proof of the Pythagorean theorem1 given by the Indian
mathematician Bhaskara (Bhaskaracharya) (1114-1185), which consists of a picture plus only
one word.

Theorem 4.1.1 (Pythagoras). If 4ABC is a right triangle with hypotenuse BC, then
AB2 �BC2 � AC2.

Proof. Behold!

Figure 4.1.1: A dissection proof of the Pythagorean theorem.

Other useful dissections include a proof of the fact that the area of a triangle is half
its base times its height (Figure 4.1.2), a proof that the median to the hypotenuse of a
right triangle divides the triangle into two isosceles triangles (Figure 4.1.3), and in three
dimensions, an embedding of a tetrahedron in a rectangular parallelepiped (Figure 4.1.4).

Figure 4.1.2: Area of a triangle equals half base times height.

Problems for Section 4.1

1The list of other authors who have given proofs of the Pythagorean theorem in this vein is a long one,
but surely the oddest name on it is U.S. President James A. Garfield (1831–1881).
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Figure 4.1.3: Median to the hypotenuse of a right triangle.

Figure 4.1.4: A tetrahedron embedded in a box.

1. (MOP 1997) Let Q be a quadrilateral whose side lengths are a, b, c, d, in that order.
Show that the area of Q does not exceed pac� bdq{2.

2. Let 4ABC be a triangle and MA, MB, MC the midpoints of the sides BC,CA, AB,
respectively. Show that the triangle with side lengths AMA, BMB, CMC has area 3{4
that of 4ABC.

3. In triangle 4ABC, points D, E, F are marked on sides BC,CA, AB, respectively, so
that

BD

DC
�

CE

EA
�

AF

FB
� 2.

Show by a dissection argument that the triangle formed by the lines
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF has

area 1{7 that of 4ABC. (Compare Problem 3.5.2.)

4. Give a dissection solution to Problem 3.5.3.

5. (For those familiar with space geometry) The 1982 SAT (an American college entrance
exam) included a question asking for the number of faces of the polyhedron obtained
by gluing a regular tetrahedron to a square pyramid along one of the triangular faces.
The answer expected by the test authors was 7, since the two polyhedra have 9 faces,
2 of which are removed by gluing. However, a student taking the exam pointed out
that this is incorrect! What is the correct answer, and why?

6. (For those familiar with space geometry) A regular tetrahedron and a regular octahe-
dron have edges of the same length. What is the ratio between their volumes?

7. Given four segments which form a convex cyclic quadrilateral of a given radius, the
same is true no matter what order the segments occur in. Prove that the resulting
quadrilaterals all have the same area. (This will be evident later from Brahmagupta’s
formula; see Fact 8.2.2.)

4.2 Angle chasing

A surprising number of propositions in Euclidean geometry can be established using nothing
more than careful bookkeeping of angles, which allows one to detect similar triangles, cyclic
quadrilaterals, and the like. In some problem circles, this technique is known as “angle
chasing”. As an example of angle chasing in action, we offer a theorem first published in
1838 by one A. Miquel.
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Figure 4.2.1: Miquel’s theorem.

Theorem 4.2.1. Let 4ABC be a triangle and let P, Q, R be any points on the sides
BC,CA, AB, respectively. Then the circumcircles of triangles ARQ, BPR,CQP pass through
a common point.

Proof. Let T be the second intersection (other than R) of the circumcircles of ARQ and
BPR. By collinearity of points,

=TQA � π �=CQT, =TRB � π �=ART, =TPC � π �=BPT.

In a convex cyclic quadrilateral, opposite angles are supplementary. Therefore

=TQA � π �=ART,=TRB � π �=BPT.

We conclude =TPC � π �=CQT . Now conversely, a convex quadrilateral whose opposite
angles are supplementary is cyclic. Therefore T also lies on the circumcircle of 4CQP , as
desired.

A defect of the angle chasing technique is that the relevant theorems depend on the
configuration of the points involved, particularly on whether certain points fall between
certain other points. For example, one might ask whether the above theorem still holds if
P, Q, R are allowed to lie on the extensions of the sides of4ABC. It does hold, but the above
proof breaks down because some of the angles claimed to be equal become supplementary,
and vice versa.

The trick to getting around this is to use “mod π directed angles” as described in
Section 1.7. To illustrate how “directed angle chasing” works, we give an example which is
both simple and important: it intervenes in our proof of Pascal’s theorem (Theorem 6.3.1).

Figure 4.2.2: Diagram for Theorem 4.2.2.

Theorem 4.2.2. Suppose that the circles ω1 and ω2 intersect at distinct points A and B.

Let CD be any chord on ω1, and let E and F be the second intersections of the lines
ÐÑ
CA

and
ÐÑ
BD, respectively, with ω2. Then

ÐÑ
EF is parallel to

ÐÑ
CD.

Proof. We chase directed angles as follows:

>CDF � >CDB (collinearity of B, D, F )

� >CAB (cyclic quadrilateral ABCD)

� >EAB (collinearity of A, C,E)

� >EFB (cyclic quadrilateral ABEF ).

Hence the lines
ÐÑ
CD and

ÐÑ
EF make the same angle with

ÐÑ
BF , and so are parallel.
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Directed angles can be expressed in terms of lines as well as in terms of points: the
directed angle >p`1, `2q between lines `1 and `2 can be interpreted as the angle of any rotation
carrying `1 to a line parallel to `2. This alternate perspective simplifies some proofs, as in
the following example; for a situation where this diagram occurs, see Problem 6.4.3.

Theorem 4.2.3. Let 4ABC be a triangle. Suppose that the lines `1 and `2 are perpendicu-
lar, and meet each side (or its extension) in a pair of points symmetric across the midpoint
of the side. Then the intersection of `1 and `2 is concyclic with the midpoints of the three
sides.

Figure 4.2.3: Diagram for Theorem 4.2.3.

Proof. Let MA, MB, MC be the midpoints of the sides BC,CA, AB, respectively, and put

P � `1 X `2. Since the lines `1, `2,
ÐÑ
BC form a right triangle and MA is the midpoint of the

hypotenuse of that triangle, the triangle formed by the points P, MA, `2 X BC is isosceles
with

>p
ÐÝÑ
MAP , `2q � >p`2,

ÐÑ
BCq.

By a similar argument,

Figure 4.2.4: Proof of Theorem 4.2.3.

>p`2,
ÐÝÑ
MBP q � >p

ÐÑ
CA, `2q,

and adding these gives

>MAPMB � >ACB � >MAMCMB

since the sides of the triangle 4MAMBMC are parallel to those of 4ABC. We conclude
that MA, MB, MC , P are concyclic, as desired.

Problems for Section 4.2

1. (USAMO 1994/3) A convex hexagon ABCDEF is inscribed in a circle such that
AB � CD � EF and diagonals AD, BE,CF are concurrent. Let P be the intersection
of AD and CE. Prove that CP {PE � pAC{CEq2.

2. (IMO 1990/1) Chords AB and CD of a circle intersect at a point E inside the circle. Let
M be an interior point of the segment EB. The tangent line of E to the circle through

D, E, M intersects the lines
ÐÑ
BC and

ÐÑ
AC at F and G, respectively. If AM{AB � t,

find EG{EF in terms of t.
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Figure 4.3.1: Diagram for Theorem 4.3.1.

3. Let 4A0B0C0 be a triangle and P a point. Define a new triangle whose vertices
A1, B1, C1 as the feet of the perpendiculars from P to B0C0, C0A0, A0B0, respec-
tively. Repeat the construction twice, starting with4A1B1C1, to produce the triangles
4A2B2C2 and 4A3B3C3. Show that 4A3B3C3 is similar to 4A0B0C0.

4. (MOP 1991) Two circles intersect at points A and B. An arbitrary line through B
intersects the first circle again at C and the second circle again at D. The tangents
to the first circle at C and the second at D intersect at M . Through the intersection

of
ÐÝÑ
AM and

ÐÑ
CD, there passes a line parallel to CM and intersecting

ÐÑ
AC at K. Prove

that
ÐÑ
BK is tangent to the second circle.

5. Let ω1, ω2, ω3, ω4 be four circles in the plane. Suppose that ω1 and ω2 intersect at P1

and Q1, ω2 and ω3 intersect at P2 and Q2, ω3 and ω4 intersect at P3 and Q3, and ω4

and ω1 intersect at P4 and Q4. Show that if P1, P2, P3, and P4 lie on a line or circle,
then Q1, Q2, Q3, and Q4 also lie on a line or circle. (This is tricky; see the proof of
Theorem 10.1.2.)

4.3 Working backward

A common stratagem, when trying to prove that a given point has a desired property, is to
construct a phantom point with the desired property, then reason backwards to show that
it coincides with the original point. We illustrate this point with an example.

Theorem 4.3.1. Suppose the triangles 4ABC and 4AB1C 1 are directly similar. Then the

points A, B, C,
ÐÝÑ
BB1 X

ÐÝÑ
CC 1 lie on a circle.

Proof. Since we want to show that
ÐÝÑ
BB1 X

ÐÝÑ
CC 1 lies on the circle through A, B, C, and anal-

ogously on the circle through A, B1, C 1, we define the point P to be the intersection of these
two circles. Then

>APB � >ACB � >AC 1B1 � >APB1

and so P lies on the line
ÐÝÑ
BB1, and similarly on the line

ÐÝÑ
CC 1.

Problems for Section 4.3

1. (IMO 1994/2) Let 4ABC be an isosceles triangle with AB � AC. Suppose that

(i) M is the midpoint of BC and O is the point on the line
ÐÝÑ
AM such that

ÐÑ
OB is

perpendicular to
ÐÑ
AB;

(ii) Q is an arbitrary point on the segment BC different from B and C;
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(iii) E lies on the line
ÐÑ
AB and F lies on the line

ÐÑ
AC such that E, Q, F are distinct

and collinear.

Prove that
ÐÑ
OQ is perpendicular to

ÐÑ
EF if and only if QE � QF .

2. (USAMO 2005/3) Let 4ABC be an acute-angled triangle, and let P and Q be two
points on side BC. Construct point C1 in such a way that convex quadrilateral APBC1

is cyclic,
ÐÝÑ
QC1 ‖

ÐÑ
CA, and C1 and Q lie on opposite sides of line

ÐÑ
AB. Construct point

B1 in such a way that convex quadrilateral APCB1 is cyclic,
ÐÝÑ
QB1 ‖

ÐÑ
BA, and B1 and

Q lie on opposite sides of line
ÐÑ
AC. Prove that points B1, C1, P , and Q lie on a circle.

3. (Morley’s theorem) Let 4ABC be a triangle, and for each side, draw the intersection
of the two angle trisectors closer to that side. (That is, draw the intersection of the
trisectors of A and B closer to AB, and so on.) Prove that these three intersections
determine an equilateral triangle.

Figure 4.3.2: Morley’s theorem (Problem 4.3.3).

38



Part II

Special situations
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Chapter 5

Concurrence and collinearity

This chapter is devoted to the study of two fundamental and reciprocal questions: when are
three given points collinear, and when are three given lines concurrent or parallel? (The
idea that parallel lines should be considered “concurrent” is an idea from the theory of
perspective; it will be fleshed out in our discussion of projective geometry in Chapter 11.)
This study only begins here; the themes of collinearity and concurrence recur throughout
this text, so it is worth mentioning places where they occur beyond this chapter.

• The Pascal and Brianchon theorems (Section 6.3).

• The radical axis theorem (Section 6.2).

5.1 Concurrent lines: Ceva’s theorem

We begin with a simple but useful result, published in 1678 by the Italian engineer Giovanni
Ceva (1647-1734). In his honor, a segment joining a vertex of a triangle to a point on the
opposite side is called a cevian1.

Figure 5.1.1: Ceva’s theorem (Theorem 5.1.1).

Theorem 5.1.1 (Ceva). Let 4ABC be a triangle, and let P, Q, R be points on the lines
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB, respectively, none equal to any of A, B, C. Then the lines

ÐÑ
AP,

ÐÑ
BQ,

ÐÑ
CR are

concurrent or parallel if and only if

BP

PC

CQ

QA

AR

RB
� 1 (5.1.1.1)

as an equality of signed ratios of lengths.

1Depending on who you ask, this word is pronounced either CHAY-vee-un or CHEH-vee-un. I’ve heard
other pronunciations as well, but I don’t recommend them.
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Proof. First suppose that
ÐÑ
AP,

ÐÑ
BQ,

ÐÑ
CR concur at a point T . Then the ratio of lengths

BP {PC is equal, by similar triangles, to the ratio of the distances from B and C to
ÐÑ
AP .

On the other hand, that ratio is also equal to the ratio of areas rATBs{rCTAs, since we can
calculate these areas as half of base times height, with AT as the base. Moreover, the signed
ratios BP {PC and rATBs�{rCTAs� also have the same sign, so are in fact equal.

Figure 5.1.2: Proof of Ceva’s theorem (Theorem 5.1.1).

By this argument, we get

BP

PC

CQ

QA

AR

RB
�
rATBs�
rCTAs�

rBTCs�
rATBs�

rCTAs�
rBTCs�

� 1.

In case
ÐÑ
AP,

ÐÑ
BQ,

ÐÑ
CR are parallel, we may deduce the same conclusion by continuity, or

directly: we leave this to the reader.
Conversely, suppose that (5.1.1.1) holds; we will apply the trick of working backward.

The lines
ÐÑ
AP and

ÐÑ
BQ meet at some point T , and the line

ÐÑ
CT meets

ÐÑ
AB at some point R1. (If

ÐÑ
AP and

ÐÑ
BQ are parallel, interpret

ÐÑ
CT as the common parallel to these lines through C, and

the previous sentence will still make sense.) By construction,
ÐÑ
AP,

ÐÑ
BQ,

ÐÑ
CR1 are concurrent.

However, using Ceva in the other direction (which we just proved), we find that

BP

PC

CQ

QA

AR1

R1B
� 1.

Combining this equation with (5.1.1.1) yields

AR

RB
�

AR1

R1B
.

Since AR�RB � AR1 �R1B � AB, adding 1 to both sides gives

AB

RB
�

AB

R1B

as a signed ratio of lengths, from which we conclude that RB � R1B, and hence R � R1.

In certain cases, Ceva’s Theorem is more easily applied in the following form (“trig
Ceva”).

Fact 5.1.2 (Ceva’s theorem, trigonometric form). Let 4ABC be a triangle, and let P ,

Q, R be any points in the plane distinct from A, B, C, respectively. Then
ÐÑ
AP,

ÐÑ
BQ,

ÐÑ
CR are

concurrent if and only if

sin=CAP

sin=PAB

sin=ABQ

sin=QBC

sin=BCR

sin=RCA
� 1.
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One can either deduce this from Ceva’s theorem or prove it directly. Be careful when
using trig Ceva with directed angles, as signs matter: the ratio psin=CAP q{psin=PABq
must be defined in terms of angles modulo 2π, but the sign of the ratio itself only depends

on the line
ÐÑ
AP , not on the choice of P on one side or the other of A.

Problems for Section 5.1

1. Suppose that the cevians AP, BQ,CR meet at T . Prove that

TP

AP
�

TQ

BQ
�

TR

CR
� 1.

2. Let 4ABC be a triangle, and let D, E, F be points on sides BC,CA, AB, respectively,
such that the cevians AD, BE,CF are concurrent. Show that if M, N, P are points

on EF, FD, DE, respectively, then the lines
ÐÝÑ
AM,

ÐÑ
BN,

ÐÑ
CP concur if and only if the

lines
ÐÝÑ
DM,

ÐÑ
EN,

ÐÑ
FP concur. (Many special cases of this question occur in the problem

literature.)

3. (Hungary-Israel, 1997) The three squares ACC1A
2, ABB1

1A
1, BCDE are constructed

externally on the sides of a triangle 4ABC. Let P be the center of BCDE. Prove

that the lines
ÐÑ
A1C,

ÐÝÑ
A2B,

ÐÑ
PA are concurrent.

4. (USAMO 1995/3) Given a nonisosceles, nonright triangle 4ABC inscribed in a circle
with center O, let A1, B1, C1 be the midpoints of sides BC,CA, AB respectively. Point

A2 is located on the ray
ÝÝÑ
OA1 so that 4OAA1 is similar to 4OA2A. Points B2, C2 on

rays
ÝÝÑ
OB1,

ÝÝÑ
OC1 respectively, are defined similarly. Prove that the lines

ÐÝÑ
AA2,

ÐÝÑ
BB2,

ÐÝÑ
CC2

are concurrent.

5. Given a triangle 4ABC and points X, Y, Z such that =ABZ � =XBC, =BCX �

=Y CA, =CAY � =ZAB, prove that the lines
ÐÑ
AX,

ÐÑ
BY ,

ÐÑ
CZ are concurrent. (Again,

many special cases of this problem can be found in the literature.)

6. Let A, B, C,D, E, F, P be seven points on a circle. Show that the lines
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF

are concurrent if and only if

sin=APB sin=CPD sin=EPF

sin=BPC sin=DPE sin=FPA
� �1,

where the angles are measured modulo 2π. (The only tricky part is the sign.)

5.2 Collinear points: Menelaus’s theorem

When he published his theorem, Ceva also revived interest in an ancient theorem attributed
to Menelaus2 (70?-130?).

2Not to be confused with the brother of Agamemnon in Homer’s Iliad.
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Figure 5.2.1: Menelaus’s theorem (Theorem 5.2.1).

Theorem 5.2.1 (Menelaus). Let 4ABC be a triangle, and let P, Q, R be points on the lines
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB, respectively, none equal to any of A, B, C. Then P, Q, R are collinear if and

only if
BP

PC

CQ

QA

AR

RB
� �1

as an equality of signed ratios of lengths.

Proof. Assume that P, Q, R are collinear. Let x, y, z be the directed distances from A, B, C,

respectively, to the line
ÐÝÑ
PQR. Then BP {PC � �y{z and so forth, so

Figure 5.2.2: Menelaus’s theorem (Theorem 5.2.1).

BP

PC

CQ

QA

AR

RB
� p�1qp�1qp�1q

y

z

z

x

x

y
� �1.

The converse follows by the same argument as for Ceva’s theorem.

An important consequence of Menelaus’s theorem is the following result of Desargues
(for more on whom see the introduction to Chapter 11), which is most easily stated by
introducing two pieces of terminology. Two triangles 4ABC and 4DEF are said to be

perspective from a point if the lines
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF are concurrent or parallel. The triangles

are said to be perspective from a line if the points
ÐÑ
AB X

ÐÑ
DE,

ÐÑ
BC X

ÐÑ
EF,

ÐÑ
CA X

ÐÑ
FD are

collinear.

Theorem 5.2.2 (Desargues). Two triangles 4ABC and 4DEF are perspective from a
point if and only if they are perspective from a line.

Proof. We only prove that if 4ABC and 4DEF are perpective from a point, then they are
perspective from a line. We leave it as an exercise to deduce the reverse implication from
this (stare at the diagram); we will do this again later, using duality.

Figure 5.2.3: Proof of Desargues’s theorem (Theorem 5.2.2).

Suppose that
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF concur at O, and put P �

ÐÑ
BC X

ÐÑ
EF , Q �

ÐÑ
CA X

ÐÑ
FD,

R �
ÐÑ
AB X

ÐÑ
DE. To show that P, Q, R are collinear, we want to show that

AR

RB

BP

PC

CQ

QA
� �1
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and then invoke Menelaus’s theorem. To get hold of the first term, we apply Menelaus to
the points R,D, E on the sides of the triangle 4OAB, giving

AR

RB

BD

DO

OE

EA
� �1.

Analogously,
BP

PC

CE

EO

OF

FB
�

CQ

QA

AF

FO

OD

DC
� �1.

When we multiply these three expressions together and cancel equal terms, we get precisely
the condition of Menelaus’s theorem.

Another important consequence of Menelaus’s theorem is the following result of Pappus
of Alexandria (290?-350?).

Theorem 5.2.3 (Pappus). Let A, C,E be three collinear points, and let B, D, F be three

other collinear points. Then the points
ÐÑ
AB X

ÐÑ
DE,

ÐÑ
BC X

ÐÑ
EF ,

ÐÑ
CD X

ÐÑ
FA are collinear.

The proof is similar, but more complicated; we omit it, save to say that one applies

Menelaus repeatedly using the triangle formed by the lines
ÐÑ
AB,

ÐÑ
CD,

ÐÑ
EF . If you can’t make

the cancellation work, see [5].
Note that Desargues’s and Pappus’s theorems only involve points and lines, with no

mention of distances or angles. This makes them “theorems of projective geometry,” and we
will see later (Section 11.2) how projective transformations often yield simple proofs of such
theorems.

Problems for Section 5.2

1. Prove Pappus’s theorem (Theorem 5.2.3) directly in terms of Cartesian coordinates;
the hope is that you will find this doable but not pleasant!

2. Prove the reverse implication of Desargues’ theorem.

3. Let A, B, C be three points on a line. Pick a point D in the plane, and a point E on
ÐÑ
BD. Then draw the line through

ÐÑ
AE X

ÐÑ
CD and

ÐÑ
CE X

ÐÑ
AD. Show that this line meets

the line
ÐÑ
AC in a point P that depends only on A, B, C. (The points A, B, C, P are in

fact harmonic conjugates, for more on which see Section 11.6.)

4. (MOP 1990) Let A, B, C be three collinear points and D, E, F three other collinear

points. Put G �
ÐÑ
BE X

ÐÑ
CF , H �

ÐÑ
AD X

ÐÑ
CF , I �

ÐÑ
AD X

ÐÑ
CE. If AI � HD and

CH � GF , prove that BI � GE.

5. (Original) Let 4ABC be a triangle and let P be a point in its interior, not lying on

any of the medians of 4ABC. Put A1 �
ÐÑ
PAXBC, B1 �

ÐÑ
PB XCA, C1 �

ÐÑ
CAXAB,

A2 �
ÐÝÑ
B1C1 X

ÐÑ
BC, B2 �

ÐÝÑ
C1A1 X

ÐÑ
CA, C2 �

ÐÝÑ
A2B2 X

ÐÑ
AB. Prove that the midpoints of

A1A2, B1B2, C1C2 are collinear. (See also Problem 6.5.2.)
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Figure 5.3.1: Fact 5.3.1.

6. (Aaron Pixton) Let 4ABC and 4DEF be triangles, and let P be a point. For each
nonzero real number r, let Tr be the triangle obtained from 4ABC by a homoth-
ety about P of ratio r. Suppose that for some three distinct nonzero real numbers
r1, r2, r3, each of Tr1 , Tr2 , Tr3 is perspective with 4DEF . Prove that Tr and 4DEF
are perspective for any r.

5.3 Concurrent perpendiculars

Some of the special points of a triangle are constructed by drawing perpendiculars to the sides
of a triangle. For example, the circumcenter can be constructed by drawing the perpendicular
bisectors. It is convenient that a result analogous to Ceva’s Theorem holds for perpendiculars;
the analogy is so strong that we can safely leave the proof to the reader (see Problem 1).

Fact 5.3.1. Let 4ABC be a triangle, and let P, Q, R be three points in the plane. Then the

lines through P, Q, R perpendicular to
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB, respectively, are concurrent or parallel

if and only if
BP 2 � PC2 � CQ2 �QA2 � AR2 �RB2 � 0.

A surprising consequence is that the lines through P, Q, R perpendicular to
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB,

respectively, are concurrent or parallel if and only if the lines through A, B, C perpendicular

to
ÐÑ
QR,

ÐÑ
RP ,

ÐÑ
PQ, respectively, are concurrent or parallel!

Problems for Section 5.3

1. Prove that the lines
ÐÑ
AB and

ÐÑ
CD are perpendicular if and only if AC2 � AD2 �

BC2 �BD2. (Use vectors, coordinates or Pythagoras.) Then prove Fact 5.3.1.

2. (Germany, 1996) Let 4ABC be a triangle, and construct squares ABB1A2, BCC1B2,
CAA1C2 externally on its sides. Prove that the perpendicular bisectors of the segments
A1A2, B1B2, C1C2 are concurrent.

3. Let 4ABC be a triangle, ` a line and L, M, N the feet of the perpendiculars to ` from

A, B, C, respectively. Prove that the perpendiculars to
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB through L, M, N ,

respectively, are concurrent. (Their intersection is called the orthopole of the line ` and
the triangle ABC.)

4. (USAMO 1997/2) Let 4ABC be a triangle, and draw isosceles triangles 4DBC,
4AEC, 4ABF external to 4ABC (with BC,CA, AB as their respective bases).

Prove that the lines through A, B, C perpendicular to
ÐÑ
EF ,

ÐÑ
FD,

ÐÑ
DE, respectively, are

concurrent. (Several solutions are possible.)
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Chapter 6

Circular reasoning

This chapter is of course devoted not to logical fallacies, but to reasoning about the most
fundamental of geometric objects, the circle. Note that we will gain further insight into the
geometry of circles after introducing inversion in Chapter 10.

6.1 Power of a point

The following is a theorem of Euclidean geometry in the strictest of senses: it appears in the
Elements as Propositions III.35–III.37.

Theorem 6.1.1. Given a fixed circle ω and a fixed point P , draw a line through P inter-
secting ω at A and B. Then the product PA � PB depends only on P and ω, not on the
line.

Proof. Draw another line through P meeting ω at C and D, labeled as in one of the diagrams.
Then

Figure 6.1.1: Proof of the power of a point theorem (Theorem 6.1.1).

>PAC � >BAC � >BDC � �>PDB

as directed angles, so the triangles 4PAC and 4PDB are (oppositely) similar, giving
PA{PD � PC{PB, or equivalently PA � PB � PC � PB.

We may view PA � PB as a signed quantity by the same convention as for signed ratios
of lengths. This signed quantity is called the power of P with respect to ω; note that it is
positive if P lies outside ω, zero if P lies on ω, and negative if P lies inside ω. If O is the

center of ω and r is the radius, we may choose
ÐÑ
OP as our line and so express the power as

pOP � rqpOP � rq � OP 2 � r2.

Note that for P outside ω, the limiting case A � B means that
ÐÑ
PA is tangent to ω at A.

The power of a point theorem has an occasionally useful converse.
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Fact 6.1.2. If the lines
ÐÑ
AB and

ÐÑ
CD meet at P , and there is an equality PA �PB � PC �PD

of signed products of lengths, then A, B, C,D are concyclic.

Problems for Section 6.1

1. If A, B, C,D are concyclic and
ÐÑ
AB X

ÐÑ
CD � E, prove that pAC{BCqpAD{BDq �

AE{BE.

2. (Mathematics Magazine, Dec. 1992) Let 4ABC be an acute triangle, let H be the
foot of the altitude from A, and let D, E, Q be the feet of the perpendiculars from an
arbitrary point P in the triangle onto AB, AC, AH, respectively. Prove that

|AB � AD � AC � AE| � BC � PQ.

3. Draw tangents OA and OB from a point O to a given circle. Through A is drawn a

chord AC parallel to
ÐÑ
OB; let E be the second intersection of

ÐÑ
OC with the circle. Prove

that the line
ÐÑ
AE bisects the segment OB.

4. (MOP 1995) Given triangle 4ABC, let D, E be any points on BC. A circle through

A cuts the lines
ÐÑ
AB,

ÐÑ
AC,

ÐÑ
AD,

ÐÑ
AE at the points P, Q, R, S, respectively. Prove that

AP � AB � AR � AD

AS � AE � AQ � AC
�

BD

CE
.

5. (IMO 1995/1) Let A, B, C,D be four distinct points on a line, in that order. The

circles with diameters AC and BD intersect at X and Y . The line
ÐÑ
XY meets

ÐÑ
BC at

Z. Let P be a point on the line
ÐÑ
XY other than Z. The line

ÐÑ
CP intersects the circle

with diameter AC at C and M , and the line
ÐÑ
BP intersects the circle with diameter

BD at B and N . Prove that the lines
ÐÝÑ
AM,

ÐÑ
DN,

ÐÑ
XY are concurrent.

6. (USAMO 1998/2) Let ω1 and ω2 be concentric circles, with ω2 in the interior of ω1.
From a point A on ω1 one draws the tangent AB to ω2 (B P ω2). Let C be the second

point of intersection of
ÐÑ
AB and ω1, and let D be the midpoint of AB. A line passing

through A intersects ω2 at E and F in such a way that the perpendicular bisectors of
DE and CF intersect at a point M on AB. Find, with proof, the ratio AM{MC.

6.2 Radical axis

Given two circles, one with center O1 and radius r1, the other with center O2 and radius r2,
what is the set of points with equal power with respect to the two circles? By our explicit
formula for the power of a point, this is simply the set of points P such that PO2

1 � r2
1 �

PO2
2 � r2

2, or equivalently such that PO2
1 � PO2

2 � r2
1 � r2

2. By Problem 5.3.1, this set is a

straight line perpendicular to
ÐÝÑ
O1O2; we call this line the radical axis of the two circles.
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Theorem 6.2.1 (Radical axis theorem). Let ω1, ω2, ω3 be three circles. Then the radical
axes of ω1 and ω2, of ω2 and ω3, and of ω3 and ω1 either all coincide, or are concurrent (or
parallel).

Proof. A point on two of the radical axes has equal power with respect to all three circles.
Hence if two of the axes coincide, so does the third, and otherwise if any two of the axes
have a common point, this point lies on the third axis as well.

Corollary 6.2.2. The common chords of three mutually intersecting circles lie on concurrent
lines.

If the radical axes coincide, the three circles are said to be coaxial1 ; otherwise, the
intersection of the three radical axes is called the radical center of the circles. (As usual,
this intersection could be “at infinity”, if the three lines are parallel.) There are three types
of coaxial families, depending on whether the circles have zero, one, or two intersections
with the common radical axis; these three cases are illustrated in Figure 6.2.1. (Note: the
zero and two cases become identical in the complex projective plane; see Section 11.7.) A

Figure 6.2.1: Some coaxial families of circles.

useful criterion for recognizing and applying the coaxial property is the following simple
observation and partial converse.

Fact 6.2.3. If three circles are coaxial, their centers are collinear. Conversely, if three circles
pass through a common point and have collinear centers, they are coaxial.

Like the power-of-a-point theorem, the radical axis theorem has an occasionally useful
converse.

Fact 6.2.4. Suppose that ABCD and CDEF are cyclic quadrilaterals, and the lines
ÐÑ
AB,

ÐÑ
CD,

ÐÑ
EF

are concurrent. Then EFAB is also cyclic. More generally, if ω1, ω2 are two circles with

radical axis `, A, B are points on ω1, C, D are points on ω2, and
ÐÑ
AB and

ÐÑ
EF meet at a point

on `, then A, B, E, F are concyclic. (We may allow A � B by taking
ÐÑ
AB to be the tangent

line to ω1 at that point, and likewise we may allow C � D.)

Problems for Section 6.2

1. Prove Fact 6.2.4. (Hint: draw a third circle and apply the radical axis theorem.)

2. Use the radical axis theorem to give another solution for Problem 5.3.4.

3. (MOP 1995) Let BB1, CC 1 be altitudes of triangle 4ABC, and assume AB � AC.
Let M be the midpoint of BC, H the orthocenter of 4ABC, and D the intersection

of
ÐÑ
BC and

ÐÝÑ
B1C 1. Show that

ÐÑ
DH is perpendicular to

ÐÝÑ
AM .

1The word is also spelled “coaxal”, as in [5].
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Figure 6.3.1: Pascal’s theorem (Theorem 6.3.1) and van Yzeren’s proof.

4. (IMO 1994 proposal) A circle ω is tangent to two parallel lines `1 and `2. A second
circle ω1 is tangent to `1 at A and to ω externally at C. A third circle ω2 is tangent to
`2 at B, to ω externally at D and to ω1 externally at E. Let Q be the intersection of
ÐÑ
AD and

ÐÑ
BC. Prove that QC � QD � QE.

5. (India, 1995) Let 4ABC be a triangle. A line parallel to
ÐÑ
BC meets sides AB and AC

at D and E, respectively. Let P be a point inside triangle 4ADE, and let F and G be

the intersection of
ÐÑ
DE with

ÐÑ
BP and

ÐÑ
CP , respectively. Show that A lies on the radical

axis of the circumcircles of 4PDG and 4PFE.

6. (IMO 1985/5) A circle with center O passes through the vertices A and C of triangle
4ABC, and intersects the segments AB and BC again at distinct points K and N ,
respectively. The circumscribed circles of the triangle 4ABC and 4KBN intersect
at exactly two distinct points B and M . Prove that angle =OMB is a right angle.

7. (TST 2004/4) Let4ABC be a triangle, and let D be a point in its interior. Construct a
circle ω1 passing through B and D, and a circle ω2 passing through C and D, such that

the point of intersection of ω1 and ω2 other than D lies on the line
ÐÑ
AD. Denote by E, F

the points where ω1, ω2 intersect side BC, respectively, and by X, Y the intersections
ÐÑ
DF X

ÐÑ
AB,

ÐÑ
DE X

ÐÑ
AC, respectively. Prove that

ÐÑ
XY is parallel to

ÐÑ
BC.

6.3 The Pascal-Brianchon theorems

Although Blaise Pascal (1623–1662) is most famous for “Pascal’s triangle2”, he also left
behind an amazing theorem about hexagons inscribed in circles. His original proof, which
was favorably described by calculus pioneer Gottfried Wilhelm von Leibniz (1646–1716), has
unfortunately been lost; we present here an ingenious proof essentially due to Jan van Yzeren
(A simple proof of Pascal’s hexagon theorem, Monthly, December 1993).

Theorem 6.3.1 (Pascal). Let ABCDEF be a hexagon inscribed in a circle. Then the

intersections
ÐÑ
AB X

ÐÑ
DE,

ÐÑ
BC X

ÐÑ
EF ,

ÐÑ
CD X

ÐÑ
FA are collinear.

Proof. Put P �
ÐÑ
AB X

ÐÑ
DE, Q �

ÐÑ
BC X

ÐÑ
EF , R �

ÐÑ
CD X

ÐÑ
FA. Draw the circle ω through

C, F,R, and extend the lines
ÐÑ
BC and

ÐÑ
EF to meet this circle again at G and H, respectively;

see Figure 6.3.1. By Theorem 4.2.2, we have
ÐÑ
BE ‖

ÐÑ
GH,

ÐÑ
ED ‖

ÐÑ
HR,

ÐÑ
AB ‖

ÐÑ
RG.

Now notice that the triangles 4RGH and 4PBE have parallel sides, which means that

they are homothetic. In other words, the lines
ÐÑ
BG,

ÐÑ
EH,

ÐÑ
PR are concurrent, which means

ÐÑ
BGX

ÐÑ
EH � Q is collinear with P and R, as desired.

2The famous triangle was actually known in ancient China. However, Pascal investigated the triangle
much more deeply, in his foundational work on probability theory.
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Some time later, Charles Brianchon (1783–1864) discovered a counterpart to Pascal’s
theorem for a hexagon circumscribed about a circle. We will give Brianchon’s proof of his
theorem, which uses the polar map to reduce it to Pascal’s theorem, in Section 11.5; a direct
but somewhat complicated proof can be found in [5].

Theorem 6.3.2 (Brianchon). Let ABCDEF be a hexagon circumscribed about a circle

(i.e., the extension of each side is tangent to the circle). Then the lines
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF are

concurrent.

Figure 6.3.2: Brianchon’s theorem (Theorem 6.3.2).

It is sometimes useful to apply Pascal’s theorem or Brianchon’s theorem in certain degen-
erate cases, in which some of the vertices coincide. For example, in Pascal’s theorem, if two
adjacent vertices of the hexagon coincide, one should take the line through them to be the

tangent to the circle at that point. Thus in Figure 6.3.3, we may conclude that
ÐÑ
AAX

ÐÑ
DE,

Figure 6.3.3: A degenerate case of Pascal’s theorem (Theorem 6.3.1).

ÐÑ
AC X

ÐÑ
EF ,

ÐÑ
CD X

ÐÑ
FA are collinear, where

ÐÑ
AA denotes the tangent to the circle at A.

As for Brianchon’s theorem, the analogous argument shows that the “vertex” between
two collinear sides belongs at the point of tangency, as in Figure 6.3.4.

Figure 6.3.4: A degenerate case of Brianchon’s theorem (Theorem 6.3.2).

Problems for Section 6.3

1. What do we get if we apply Brianchon’s theorem with three degenerate vertices? (We
will encounter this fact again later.)

2. Let ABCD be a quadrilateral whose sides AB, BC, CD, DA are tangent to a single
circle at points M, N, P, Q, respectively. Prove that the lines AC, BD, MP,NQ are
concurrent.

3. (MOP 1995) With notation as in the previous problem, let lines
ÐÑ
BQ,

ÐÑ
BP intersect the

circle at E, F , respectively. Prove that
ÐÝÑ
ME,

ÐÑ
NF ,

ÐÑ
BD are concurrent.

4. (Poland, 1997) Let ABCDE be a convex pentagon with CD � DE and =BCD �
=DEA � π{2. Let F be the point on side AB such that AF {FB � AE{BC. Show
that

=FCE � =FDE and =FEC � =BDC.
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6.4 Simson lines

The following theorem is often called Simson’s theorem in honor of Robert Simson (1687–
1768), but it is actually originally due to William Wallace (1768–1843).

Theorem 6.4.1. Let A, B, C be three points on a circle. Then the feet of the perpendiculars

from P to the lines
ÐÑ
AB,

ÐÑ
BC,

ÐÑ
CA are collinear if and only if P also lies on the circle.

Proof. The proof is by (directed) angle-chasing. Let X, Y, Z be the feet of the respective

perpendiculars from P to
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB; then the quadrilaterals PXCY, PY AZ, PZBX each

have two right angles, and are thus cyclic. Therefore

>PXY � >PCY (cyclic quadrilateral PXCY )

� >PCA (collinearity of A, C, Y )

and analogously >PXZ � >PBA. Now X, Y, Z are collinear if and only if >PXY �
>PXZ, which by the above equations occurs if and only if >PCA � >PBA; in other
words, if and only if A, B, C, P are concyclic.

For P on the circle, the line described in the theorem is called the Simson line of P with
respect to the triangle 4ABC. We note in passing that an alternate proof of the collinearity
in this case can be given using Menelaus’s theorem.

Problems for Section 6.4

1. Let A, B, C, P,Q be points on a circle. Show that the (directed) angle between the
Simson lines of P and Q with respect to the triangle4ABC equals half of the (directed)
arc measure mp�PQq.

2. Let A, B, C,D be four points on a circle. Prove that the intersection of the Simson
line of A with respect to 4BCD with the Simson line of B with respect to 4ACD is
collinear with C and the orthocenter of 4ABD.

3. If A, B, C, P,Q are five points on a circle such that PQ is a diameter, show that the
Simson lines of P and Q with respect to 4ABC intersect at a point concyclic with the
midpoints of the sides of 4ABC.

4. Let I be the incenter of triangle 4ABC, and D, E, F the projections of I onto
BC,CA, AB, respectively. The incircle of ABC meets the segments AI, BI, CI at
M, N, P , respectively. Show that the Simson lines of any point on the incircle with
respect to the triangles 4DEF and 4MNP are perpendicular.
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6.5 Circle of Apollonius

The ancient geometer Apollonius of Perga (262?–190? B.C.E.) is most famous for his early
work on conic sections (see Section 11.3). However, his name has also come to be attached
to another pretty geometrical construction.

Theorem 6.5.1. Let A, B be any two points, and let k � 1 be a positive real number. Then

the locus of points P such that PA{PB � k is a circle whose center lies on
ÐÑ
AB.

Proof. One can show this synthetically, but the shortest proof involves introducing Cartesian
coordinates such that A � pa, 0q and B � pb, 0q. The condition PA{PB � k is equivalent
to PA2 � k2PB2, which in coordinates can be written

px� aq2 � y2 � k2rpx� bq2 � y2s.

Combining terms and dividing through by 1� k2, we get

x2 �
2k2b� 2a

1� k2
x� y2 �

k2b2 � a2

1� k2
,

which is easily recognized as the equation of a circle whose center lies on the x-axis.

This circle is called the circle of Apollonius corresponding to the points A, B and the
ratio k. (This term usually also includes the degenerate case k � 1, where the “circle”
becomes the perpendicular bisector of AB.)

Problems for Section 6.5

1. Use circles of Apollonius to give a synthetic proof of the classification of similarities
(Theorem 3.4.1).

2. (Original) Set notation as in Problem 5.2.5. Prove that if some two of the circles
with diameters A1A2, B1B2, C1C2 intersect, then the three circles are coaxial (and so
Problem 5.2.5 follows). Beware that the case where the circles do not meet is trickier,
unless you work in the complex projective plane as described in Section 11.7.

6.6 Additional problems

Problems for Section 6.6

1. (Archimedes’ “broken-chord” theorem) Point D is the midpoint of arc �AC of a circle;

point B is on minor arc �CD; and E is the point on AB such that
ÐÑ
DE is perpendicular

to
ÐÑ
AB. Prove that AE � BE �BC.
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2. The convex hexagon ABCDEF is such that

=BCA � =DEC � =FAE � =AFB � =CBD � =EDF.

Prove that AB � CD � EF .

3. (Descartes’s four circles theorem) Let r1, r2, r3, r4 be the radii of four mutually exter-
nally tangent circles. Prove that

4̧

i�1

2

r2
1

�

�
4̧

i�1

1

ri

�2

.

Also verify that the result holds without requiring the tangencies to be external, if one
imposes the sign convention that two radii have the same sign if they correspond to
externally tangent circles, and have opposite sign otherwise.

4. Deduce from the previous problem the following interesting consequence. Define the
curvature of a circle to be the reciprocal of its radius. Draw three mutually externally
tangent circles with integer curvatures, each internally tangent to a given unit circle.
Then repeatedly insert the circle externally tangent to three previously drawn mutually
externally tangent circles. Show that all of the resulting circles have integer curvature.
These form an example of an Apollonian gasket (or Apollonian circle packing) .

Figure 6.6.1: An Apollonian gasket.
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Chapter 7

Triangle trivia

In this chapter, we study but a few of the most important constructions associated to a
triangle. One could pursue this study almost indefinitely; simply restricting to “centers”
associated to a triangle leads to literally hundreds1 of examples.

For convenience, we adopt the following convention throughout this chapter: in triangle
4ABC, we write a, b, c for the respectively side lengths BC, CA, AB.

7.1 Centroid

For 4ABC a triangle, the median of 4ABC from vertex A is the cevian from A whose
endpoint is the midpoint of BC.

Fact 7.1.1. The medians of a triangle are concurrent. Moreover, the point of concurrency
trisects each median.

Figure 7.1.1: Fact 7.1.1.

One can easily show this using Ceva and Menelaus, or by performing an affine transfor-
mation making the triangle equilateral, or by using vectors.

The concurrency point of the medians is called the centroid2 of 4ABC. It is also called
the center of mass for the following reason: if equal masses are placed at each of A, B, C,
the center of mass of the resulting system will lie at the centroid of 4ABC. (Compare the
discussion of “mass points” in Section 2.2.)

Problems for Section 7.1

1Indeed, the companion web site http://faculty.evansville.edu/ck6/encyclopedia/ of the book
[13] lists over 1000 special points associated to a triangle!

2The existence of the centroid seems to be one of the few nontrivial facts proved in standard American
geometry courses.
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1. (http://www.cut-the-knot.org) Let G be the centroid of triangle 4ABC. Draw a

line through G meeting
ÐÑ
AB at M and

ÐÑ
CA at N . Prove that as ratios of signed lengths,

BM

MA
�

CN

NA
� 1.

2. (Floor van Loemen, Monthly April 2002) A triangle is divided into six smaller triangles
by its medians. Prove that the circumcenters of these six triangles lie on a circle.

7.2 Incenter and excenters

If the point P lies in the interior of triangle 4ABC, then then the distances from P to the

lines
ÐÑ
AB and

ÐÑ
AC are

PA sin=PAB and PA sin=PAC

and these are equal if and only if =PAB � =PAC, in other words, if P lies on the internal
angle bisector of =A.

It follows that the intersection of two internal angle bisectors is equidistant from all three
sides, and consequently lies on the third bisector. This intersection is the incenter of4ABC,
and its distance to any side is the inradius, usually denoted r. The terminology comes from
the fact that the circle of radius r centered at the incenter is tangent to all three sides of
4ABC, and thus is called the inscribed circle, or incircle, of ABC.

Do not forget, though, that the angle =A in triangle 4ABC has two angle bisectors, one

internal and one external. The locus of points equidistant to the two lines
ÐÑ
AB and

ÐÑ
AC is the

union of both lines, and so one might expect to find other circles tangent to all three sides.
Indeed, the internal angle bisector at A concurs with the external bisectors of the other two
angles (by the same argument as above); the point of concurrence is the excenter of 4ABC
opposite A, and the circle centered there tangent to all three sides is the escribed (exscribed)
circle, or excircle, of 4ABC opposite A.

In studying the incircle and excircles, a fundamental tool is the fact that the two tangents
to a circle from an external point have the same length. This fact is equally useful is its own
right, and we have included some problems that take advantage of equal tangents. In any
case, the key observation we need is that if D, E, F are the points where the incircle touches
BC,CA, AB, respectively, then AE � AF and so on, so a little algebra gives

AE �
1

2
pAE � EC � AF � FB � CD �DBq.

This establishes the first half of the following result; the second half is no harder. Recall
that s � pa� b� cq{2 is called the semiperimeter of 4ABC.

Fact 7.2.1. Let s � pa� b� cq{2. Then the distance from A to the point where the incircle
touches AB is s � a, and the distance from A to the point where the excircle opposite C
touches AB is s� b.
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Figure 7.2.1: Fact 7.2.1.

Figure 7.2.2: Fact 7.2.3.

It will often be helpful to know in what ratio an angle bisector divides the opposite side.
The answer can be used to give another proof of the concurrence of the angle bisectors.

Fact 7.2.2 (Angle bisector theorem). If D is the foot of either angle bisector of A in triangle
4ABC, then (as unsigned lengths)

DB

DC
�

AB

AC
.

Another useful construction for studying incenters is the following.

Fact 7.2.3. Let 4ABC be a triangle inscribed in a circle ω with center O, and let M be the
second intersection of ω with the internal angle bisector of A.

1. The line
ÐÝÑ
MO is perpendicular to

ÐÑ
BC, i.e., M is the midpoint of arc �BC.

2. The circle centered at M passing through B and C also passes through the incenter I
and the excenter IA opposite A; that is, MB � MI � MC � MIA.

3. We have OI2 � R2�2Rr, where R is the circumradius and r is the inradius of 4ABC.

Problems for Section 7.2

1. Use the angle bisector theorem to give a synthetic proof of Theorem 6.5.1.

2. (Arbelos) The two common external tangent segments between two nonintersecting
circles cut off a segment along one of the common internal tangents. Show that all
three segments have the same length.

3. The incircle of a triangle is projected onto each of the three sides. Prove that the six
endpoints of the resulting segments are concyclic.

4. (Răzvan Gelca) Let 4ABC be a triangle, and let D, E, F be the points where the
incircle touches the sides BC,CA, AB, respectively. Let M, N, P be points on the

segments EF, FD, DE, respectively. Show that the lines
ÐÝÑ
AM,

ÐÑ
BN,

ÐÑ
CP intersect if

and only if the lines
ÐÝÑ
DM,

ÐÑ
EN,

ÐÑ
FP intersect.

5. (USAMO 1991/5) Let D be an arbitrary point on side AB of a given triangle 4ABC,
and let E be the interior point where CD intersects the external common tangent to
the incircles of triangles 4ACD and 4BCD. As D assumes all positions between A
and B, show that E traces an arc of a circle.

57



6. (Iran, 1997) Let 4ABC be a triangle, and let P a varying point on the arc �BC of the
circumcircle of 4ABC. Prove that the circle through P and the incenters of 4PAB
and 4PAC passes through a fixed point independent of P .

7. (USAMO 1999/6) Let ABCD be an isosceles trapezoid with
ÐÑ
AB ‖

ÐÑ
CD. The inscribed

circle ω of triangle 4BCD meets CD at E. Let F be a point on the (internal) angle

bisector of =DAC such that
ÐÑ
EF K

ÐÑ
CD. Let the circumscribed circle of triangle

4ACF meet line
ÐÑ
CD at C and G. Prove that the triangle 4AFG is isosceles.

8. (IMO 1992/4) In the plane let C be a circle, let L be a line tangent to the circle C,
and let M be a point on L. Find the locus of all points P with the following property:
there exists two points Q, R on L such that M is the midpoint of QR and C is the
inscribed circle of triangle 4PQR.

9. (Bulgaria, 1996) The circles k1 and k2 with respective centers O1 and O2 are externally
tangent at the point C, while the circle k with center O is externally tangent to k1

and k2. Let ` be the common tangent of k1 and k2 at the point C and let AB be the
diameter of k perpendicular to `. Assume that O2 and A lie on the same side of `.

Show that the lines
ÐÝÑ
AO1,

ÐÝÑ
BO2, ` have a common point.

10. (MOP 1997) Let4ABC be a triangle, and D, E, F the points where the incircle touches

sides BC,CA, AB, respectively. The parallel to
ÐÑ
AB through E meets

ÐÑ
DF at Q, and

the parallel to
ÐÑ
AB through D meets

ÐÑ
EF at T . Prove that the lines

ÐÑ
CF,

ÐÑ
DE,

ÐÑ
QT are

concurrent.

11. (Stanley Rabinowitz3) The incircle of triangle 4ABC touches sides BC,CA, AB at
D, E, F , respectively. Let P be any point inside triangle 4ABC, and let X, Y, Z be
the points where the segments PA, PB, PC, respectively, meet the incircle. Prove that

the lines
ÐÑ
DX,

ÐÑ
EY ,

ÐÑ
FZ are concurrent.

7.3 Circumcenter and orthocenter

It was pointed out earlier that any triangle 4ABC has a unique circumscribing circle (cir-
cumcircle); note that its center, the circumcenter of 4ABC, is the point of concurrency of
the perpendicular bisectors of AB, BC, CA.

A closely related point is the orthocenter, defined as the intersection of the altitudes of
a triangle. One can apply Fact 5.3.1 to show that these actually concur, or one can modify
the proof of the following theorem to include this concurrence as a consequence.

Theorem 7.3.1. Let 4ABC be a triangle, and let O,G,H be its circumcenter, centroid and
orthocenter, respectively. Then O, G, H lie on a line in that order, and 2OG � GH.

3Rabinowitz uses the diagram for this problem as the logo of his company Mathpro Press.
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The line OGH is called the Euler line of triangle 4ABC.

Proof. The homothety with center G and ratio �1{2 carries 4ABC to the medial triangle
4A1B1C 1, where A1, B1, C 1 are the respective midpoints of BC,CA, AB. Moreover, the
altitude from A1 in the medial triangle coincides with the perpendicular bisector of BC,

since both are perpendicular to
ÐÑ
BC and pass through A1. Hence H maps to O under the

homothety, and the claim follows.

Some of the problems will use the following facts about the orthocenter, which we leave
as exercises in angle-chasing.

Figure 7.3.1: The orthic triangle of a triangle (Fact 7.3.2).

Fact 7.3.2. In triangle 4ABC, let H be the orthocenter, and let HA, HB, HC be the feet of
the respective altitudes from A, B, C. Then the following statements hold.

1. The triangles 4AHBHC, 4HABHC, 4HAHBC are (oppositely) similar to 4ABC.

2. The altitudes bisect the angles of the triangle 4HAHBHC (so H is its incenter).

3. The reflections of H across
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB lie on the circumcircle of 4ABC.

The triangle formed by the feet of the altitudes is called the orthic triangle.

Fact 7.3.3. Let 4ABC be a triangle with orthocenter H. Define the following points:

• let MA, MB, MC be the midpoints of the sides BC,CA, AB;

• let HA, HB, HC be the feet of the altitudes from A, B, C;

• let A1, B1, C 1 be the midpoints of the segments HA,HB, HC.

Then the following statements hold.

(a) The triangle 4A1B1C 1 is the half-turn of 4MAMBMC about its circumcenter.

(b) The points MA, MB, MC , HA, HB, HC , A1, B1, C 1 lie on a single circle.

(c) The center of the circle in (b) is the midpoint of OH.

The circle described in Fact 7.3.3 is called the nine-point circle of 4ABC.

Problems for Section 7.3

1. Let 4ABC be a triangle. A circle passing through B and C intersects
ÐÑ
AB and

ÐÑ
AC

again at C 1 and B1, respectively. Prove that
ÐÝÑ
BB1,

ÐÝÑ
CC 1,

ÐÝÑ
HH 1 are concurrent, where

H, H 1 are the respective orthocenters of 4ABC,4A1B1C 1.
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2. (USAMO 1990/5) An acute-angled triangle 4ABC is given in the plane. The circle
with diameter AB intersects altitude CC 1 and its extension at points M and N , and
the circle with diameter AC intersects altitude BB1 and its extensions at P and Q.
Prove that the points M, N, P, Q lie on a common circle.

3. Let ` be a line through the orthocenter H of a triangle 4ABC. Prove that the reflec-

tions of ` across
ÐÑ
AB,

ÐÑ
BC,

ÐÑ
CA pass through a common point lying on the circumcircle

of 4ABC.

4. (Bulgaria, 1997) Let4ABC be a triangle with orthocenter H, and let M and K denote
the midpoints of AB and CH. Prove that the internal angle bisectors of =CAH and

=CBH meet at a point on the line
ÐÝÑ
MK.

5. Prove Fact 7.3.3.

7.4 Gergonne and Nagel points

These points are less famous than some of the others, but they make for a few interesting
problems, so let’s get straight to work.

Fact 7.4.1. In triangle4ABC, the cevians joining each vertex to the point where the incircle
touches the opposite side are concurrent.

The concurrency point in Fact 7.4.1 is called the Gergonne point of 4ABC.

Figure 7.4.1: The Gergonne point (Fact 7.4.1).

Fact 7.4.2. In triangle4ABC, the cevians joining each vertex to the point where the excircle
opposite that vertex touches the opposite side are concurrent.

The concurrency point in Fact 7.4.2 is called the Nagel point of 4ABC.

Figure 7.4.2: The Nagel point (Fact 7.4.2).

Problems for Section 7.4

1. Prove Facts 7.4.1 and 7.4.2.

2. Here is a result analogous to the existence of the Euler line. In triangle 4ABC, let
G, I, N be the centroid, incenter, and Nagel point, respectively. Show that I, G, N lie
on a line in that order, and that NG � 2 � IG.

3. Continuing the analogy from the previous problem, prove that in triangle 4ABC,
if P, Q, R are the midpoints of sides BC,CA, AB, respectively, then the incenter of
4PQR is the midpoint of IN .
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7.5 Isogonal conjugates

Two points P and Q inside triangle ABC are said to be isogonal conjugates if

=PAB � =QAC, =PBC � =QCB, =PCA � =QAC.

In other words, Q is the reflection of P across each of the internal angle bisectors of 4ABC.

Fact 7.5.1. Every point in the interior of 4ABC has an isogonal conjugate.

This instantly gives rise to some new special points of a triangle. For example, the isogonal
conjugate of the centroid of 4ABC is called the Lemoine point ; the cevians through the
Lemoine point are called symmedians.

Problems for Section 7.5

1. Prove Fact 7.5.1, then formulate and prove a correct version for points not in the
interior of the triangle.

2. Prove that in an acute triangle, the orthocenter and the circumcenter are isogonal
conjugates. If you completed the previous problem, you should also be able to prove
this for a general triangle.

3. Given a triangle, draw through its Lemoine point a line parallel to each side of the
triangle, and consider the intersections of that line with the other two sides. Show that
the resulting six points are concyclic.

4. Show that the tangents to the circumcircle of a triangle at two vertices intersect on
the symmedian of the third vertex.

5. (Dan Moraseski) Let D, E, F be the feet of the symmedians of triangle 4ABC. Prove
that the Lemoine point of 4ABC is the centroid of 4DEF .

7.6 Brocard points

The problems in this section establish the existence and several properties of the Brocard
points. Unlike the other special points we have thus far associated to a triangle, the Brocard
points are only defined in a cyclically symmetric fashion. Consequently, there are two of
them which are interchanged by reversal of the order of the vertices.

Fact 7.6.1. For any triangle 4ABC, there exists a unique point P in the interior of 4ABC
such that

=PAB � =PBC � =PCA.

The point P in Fact 7.6.1 is called a Brocard point of 4ABC; there is a second Brocard
point obtained by reversing the order of the vertices.
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Fact 7.6.2. The two Brocard points of a triangle are isogonal conjugates.

This is equivalent to the fact that the common angle in Fact 7.6.1 is the same for the two
Brocard points. It is called the Brocard angle of 4ABC; see Problem 7.6.2 for an explicit
formula for the Brocard angle.

Problems for Section 7.6

1. Prove Fact 7.6.1.

2. Let ω be the angle such that

cot ω � cot A� cot B � cot C.

Prove that the common angle in Fact 7.6.1 is equal to ω; deduce Fact 7.6.2.

3. (IMO FIXME! (get reference)) In triangle 4ABC, put K � rABCs. Prove that

a2 � b2 � c2 ¥ 4
`

3K

by expressing the Brocard angle in terms of a, b, c, K.

4. (IMO 1991/5) Prove that inside any triangle 4ABC, there exists a point P such that
one of the angles =PAB,=PBC,=PCA has measure at most 30�.

7.7 Frame shift

Once one has gathered up a lot of triangle trivia, it becomes necessary to use it effectively.
Often this is accomplished by what I call a “frame shift”: you are originally given some
points in reference to a given triangle, but you then view them in reference to a different
triangle. For instance, given triangle 4ABC:

1. The orthocenter is the incenter of the orthic triangle.

2. The circumcenter is the orthocenter of the medial triangle.

Problems for Section 7.7

1. (Russia, 2003) Let O and I be the circumcenter and incenter of triangle 4ABC,
respectively. Let ωA be the excircle of triangle 4ABC opposite to A; let it be tangent

to
ÐÑ
AB,

ÐÑ
AC,

ÐÑ
BC at K, M, N , respectively. Assume that the midpoint of segment KM

lies on the circumcircle of triangle 4ABC. Prove that O, N, I are collinear.
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7.8 Vectors for special points

The vector equations for some of the special points of a triangle 4ABC are summarized in
the following table. The asterisked expressions assume the circumcenter of the triangle has
been chosen as the origin; the origin-independent expressions are not nearly so pleasant to
work with!

Circumcenter* 0

Centroid 1
3
p ~A� ~B � ~Cq

Orthocenter* ~A� ~B � ~C

Incenter 1
a�b�c

pa ~A� b ~B � c ~Cq

Problems for Section 7.8

1. Let P, Q, R be the feet of concurrent cevians in triangle 4ABC. Determine the vec-
tor expression for the point of concurrence in terms of the ratios BP {PC, CQ{QA,
AR{RB. Use this formula to extend the above table to other special points. In par-
ticular, do so for the Nagel point and obtain an alternate solution to Problem 7.4.2.

2. Let A, B, C,D be four points on a circle. Use the result of Problem 6.4.2 to show
that the Simson line of each point with respect to the triangle formed by the other
three passes through the midpoint of the segment joining the center of the circle to the
centroid of ABCD. In particular, the four Simson lines are concurrent.

3. (MOP 1995) Five points are given on a circle. A perpendicular is drawn through the
centroid of the triangle formed by three of them, to the chord connecting the remaining
two. Similar perpendiculars are drawn for each of the remaining nine triplets of points.
Prove that the ten lines obtained in this way have a common point.

4. Compute the distance between the circumcenter and orthocenter of a triangle in terms
of the side lengths a, b, c.

5. Show that the distance between the incenter and the nine-point center (see Prob-
lem 7.3.5) of a triangle is equal to R{2� r, where r and R are inradius and circumra-
dius, respectively. Deduce Feuerbach’s theorem, that the incircle and nine-point circle
are tangent. (Similarly, one can show the nine-point circle is also tangent to each of
the excircles.)

7.9 Additional problems

Here are a few additional problems concerning triangle trivia. Before proceeding to the
problems, we state as facts a few standard formulae for the area of a triangle.
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Fact 7.9.1. Let 4ABC be a triangle with side lengths a � BC, b � CA, c � AB, inradius
r, circumradius R, exradius opposite A rA, semiperimeter s, and area K. Then

K �
1

2
ab sin C (Law of Sines)

�
abc

4R
(by Extended Law of Sines)

� rs � rAps� aq

�
a

sps� aqps� bqps� cq. (Heron’s formula)

Problems for Section 7.9

1. Let D be a point on side BC, and let m � BD, n � CD and d � AD. Prove Stewart’s
formula:4

mb2 � nc2 � apd2 �mnq.

Figure 7.9.1: Stewart’s formula (Problem 7.9.1).

2. Use Stewart’s formula to prove the Steiner-Lehmus theorem: a triangle with two equal
angle bisectors must be isosceles. (A synthetic proof is possible but not easy to find.)

3. (United Kingdom, 1997) In acute triangle 4ABC, CF is an altitude, with F on AB,
and BM is a median, with M on CA. Given that BM � CF and =MBC � =FCA,
prove that the triangle 4ABC is equilateral. Also, what happens if 4ABC is not
acute?

4. The point D lies inside the acute triangle4ABC. Three of the circumscribed circles of
the triangles 4ABC,4BCD,4CDA,4DAB have equal radii. Prove that the fourth
circle has the same radius, and characterize all such sets of four points. Also, what
happens if 4ABC need not be acute, or D need not lie in its interior?

5. (Bulgaria, 1997) Let4ABC be a triangle and let M, N be the feet of the angle bisectors

of B, C, respectively. Let D be the intersection of the ray
ÝÝÑ
MN with the circumcircle

of 4ABC. Prove that
1

BD
�

1

AD
�

1

CD
.

6. Let ABCDE be a cyclic pentagon such that rABC � rAED and rABD � rACE, where
rXY Z denotes the inradius of triangle 4XY Z. Prove that AB � AE and BC � DE.

4If written “man + dad = bmb + cnc”, this admits the mnemonic “A man and his dad build a bomb in
the sink,” in case you can recall what the letters stand for before the U.S. Department of Homeland Security
pays a visit.
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7. (MOP 1990) Let AA1, BB1, CC1 be the altitudes in an acute triangle 4ABC, and let
K and M be points on the line segments A1C1 and B1C1, respectively. Prove that if

the angles =MAK and =CAA1 are equal, then the angle =C1KM is bisected by
ÝÝÑ
KA.
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Chapter 8

Quadrilaterals

8.1 General quadrilaterals

There’s not a great deal that can be said about an arbitrary quadrilateral: the extra freedom
in placing an additional vertex disrupts much of the structure we found in triangles. What
little there is to say we offer in the form of a few problems.

Problems for Section 8.1

1. Prove that the midpoints of the sides of any quadrilateral form a parallelogram (known
as the Varignon parallelogram).

2. Let ABCD be a convex quadrilateral, and let θ be the angle between the diagonals
AC and BD. Prove that

rABCDs �
1

2
AC �BD sin θ.

3. Derive a formula for the area of a convex quadrilateral in terms of its four sides and a
pair of opposite angles.

8.2 Cyclic quadrilaterals

The condition that the four vertices of a quadrilateral lie on a circle gives rise to a wealth of
interesting structures, which we investigate in this section. We start with a classical result
of Claudius Ptolemy (85?-165?), who is more famous for his geocentric model of planetary
motion.

Theorem 8.2.1 (Ptolemy). Let ABCD be a convex cyclic quadrilateral. Then

AB � CD �BC �DA � AC �BD.
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Figure 8.2.1: Proof of Ptolemy’s theorem (Theorem 8.2.1).

Proof. Mark the point P on BD such that BP � pAB �CDq{AC, or equivalently BP {AB �
CD{AC. Since =ABP � =ACD, the triangles ABP and ACD are similar.

On the other hand, we now have

=DPA � π �=APB � π �=ADC � =CBA.

Thus the triangles 4APD and 4ABC are also similar, yielding DP {BC � AD{AC. Con-
sequently

BD � BP � PD �
AB � CD

AC
�

AD �BC

AC
and the theorem follows.

This proof is elegant, but one cannot help wondering, “How could anyone think of that?”
(I wonder that myself; the proof appears in an issue of Samuel Greitzer’s Arbelos, but he
gives no attribution.) The reader might enjoy attempting a proof using trigonometry or
complex numbers.

Another important result about cyclic quadrilaterals is an area formula attributed to the
ancient Indian mathematician Brahmagupta (598-670).1

Fact 8.2.2 (Brahmagupta). If a cyclic quadrilateral has sides a, b, c, d and area K, then

K �
a
ps� aqps� bqps� cqps� dq,

where s � pa� b� c� dq{2 is the semiperimeter.

Heron’s formula for the area of a triangle follows from Brahmagupta’s formula by regard-
ing a triangle as a cyclic quadrilateral with one side of length 0.

Problems for Section 8.2

1. Use trigonometry to give another proof of Ptolemy’s theorem (Theorem 8.2.1).

2. (Brahmagupta) Let ABCD be a cyclic quadrilateral with perpendicular diagonals.
Then the line through the intersection of the diagonals and the midpoint of any side
is perpendicular to the opposite side.

3. Use Ptolemy’s theorem and the previous problem to give a formula for the lengths of
the diagonals of a cyclic quadrilateral in terms of the lengths of the sides.

4. Let ABCD be a cyclic quadrilateral. Prove that the incenters of triangles4ABC,4BCD,4CDA,4DAB
form a rectangle.

5. Let ABCD be a cyclic quadrilateral. Prove that the sum of the inradii of 4ABC and
4CDA equals the sum of the inradii of 4BCD and 4DAB.

1This is a rare case where an Eastern mathematical discovery is reflected by Western naming customs.
Compare the situation for Pascal’s triangle; see Section 6.3.
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8.3 Circumscribed quadrilaterals

The following theorem characterizes circumscribed quadrilaterals; while it can be proved
directly using the equal tangents rule, it proves easier to exploit what we already know
about incircles and excircles of triangles.

Figure 8.3.1: A circumscribed quadrilateral.

Theorem 8.3.1. A convex quadrilateral ABCD admits an inscribed circle if and only if
AB � CD � BC �DA.

Proof. Let
ÐÑ
AB and

ÐÑ
CD meet at P ; without loss of generality, assume A lies between P and

B. (We skip the limiting case AB ‖ CD.) The quadrilateral ABCD has an inscribed circle
if and only if the incircle of 4PBC coincides with the excircle of 4PDA opposite P . Let

Q and R be the points of tangency of
ÐÑ
PB with the incircle of 4PBC and the excircle of

4PDA, respectively; since both circles are tangent to the sides of the angle =CPB, they
coincide if and only if Q � R, or equivalently PQ � PR. However, by the usual formulae

PQ �
1

2
pPB � PC �BCq �

1

2
pPD �DC � PA� AB �BCq

PR �
1

2
pPA� PD �DAq

and these are equal if and only if AB � CD � BC �DA.

Just as with triangles, a convex quadrilateral can have an escribed circle, a circle not
inside the quadrilateral but tangent to all four sides (or rather their extensions). We trust the

Figure 8.3.2: A quadrilateral having an escribed circle.

reader can now supply the proof of the analogous characterization of quadraterals admitting
an escribed circle.

Fact 8.3.2. A convex quadrilateral ABCD admits an exscribed circle opposite A or C if and
only if AB �BC � CD �DA.

For more problems about circumscribed quadrilaterals, flip back to Section 6.3, where
we study them using Brianchon’s theorem.

Problems for Section 8.3

1. (IMO 1962/5) On the circle K there are given three distinct points A, B, C. Construct
(using only straightedge and compass) a fourth point D on K such that a circle can
be inscribed in the quadrilateral thus obtained.
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2. (Dick Gibbs) Let ABCD be a quadrilateral inscribed in an ellipse, and let E � AB X
CD and F � AD X BC. Show that ACEF can be inscribed in a hyperbola with
the same foci as the ellipse. (If you’re not familiar with ellipses and hyperbolae, peek
ahead to Section 11.3.)

3. (USAMO 1998/6) Let n ¥ 5 be an integer. Find the largest integer k (as a function
of n) such that there exists a convex n-gon A1A2 � � �An for which exactly k of the
quadrilaterals AiAi�1Ai�2Ai�3 have an inscribed circle, where An�j � Aj.

8.4 Complete quadrilaterals

A complete quadrilateral is the figure formed by four lines, no two parallel and no three
concurrent; the vertices of a complete quadrilateral are the six pairwise intersections of the
lines. This configuration has been widely studied; we present here as problems a number of
intriguing properties of the diagram.

In the following problems, let ABCDEF be the complete quadrilateral formed by the
lines ABC, AEF, BDF,CDE.

Figure 8.4.1: A complete quadrilateral.

Problems for Section 8.4

1. Show that the orthocenters of the triangles 4ABF , 4ACE, 4BCD, 4DEF are
collinear. The common line is called the ortholine of the complete quadrilateral.

2. Show that the circles with diameters AD, BE,CF are coaxial. Deduce that the mid-
points of the segments AD, BE,CF are collinear. (Can you show the latter directly?)

3. Show that the circumcircles of the triangles 4ABF , 4ACE, 4BCD, 4DEF pass
through a common point, called the Miquel point of the complete quadrilateral. (Many
solutions are possible.)

4. We are given five lines in the plane, no two parallel and no three concurrent. To
every four of the lines, associate the point whose existence was shown in the previous
problem. Prove these five points lie on a circle. (This assertion and the previous one
belong to an infinite chain of such statements: see W.K. Clifford, Collected Papers
(1877), 38–54.)
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Chapter 9

Geometric inequalities

The subject of geometric inequalities is so vast that it suffices to fill entire books, two notable
examples being the volume by Bottema et al. [2] and its sequel [15]. This chapter should
thus be regarded more as a sampler of techniques than a comprehensive treatise.

9.1 Distance inequalities

A number of inequalities involve comparing lengths. Useful tools against such problems
include:

• Triangle inequality: in triangle 4ABC, AB �BC ¡ BC.

• Hypotenuse inequality: if =ABC is a right angle, then AC ¡ BC.

• Ptolemy’s inequality (Problem 10.3.9): if ABCD is a convex quadrilateral, then AB �
CD �BC �DA ¥ AC �BD, with equality if and only if ABCD is cyclic.

• Erdős-Mordell inequality: see Section 9.4.

Transformations can also be useful, particularly reflection. For example, to find the point
P on a fixed line that minimizes the sum of the distances from P to two fixed points A and
B, reflect the segment PB across the line and observe that the optimal position of P is on
the line joining A to the reflection of B.

Figure 9.1.1: Minimizing the distance from a point on a line to two fixed points.

A more dramatic example along the same lines is the following solution (by H.A. Schwarz)
to Fagnano’s problem: of the triangles inscribed in a given acute triangle, which one has
the least perimeter? Reflecting the triangle as shown implies that the perimeter of an
inscribed triangle is at least the distance from A to its eventual image, with equality when
the inscribed triangle makes equal angles with each side. As noted earlier, this occurs for
the orthic triangle, which is then the desired minimum.
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Figure 9.1.2: Solution of Fagnano’s problem.

Problems for Section 9.1

1. For what point P inside a convex quadrilateral ABCD is PA � PB � PC � PD
minimized?

2. (Euclid) Prove that the longest chord whose vertices lie on or inside a given triangle is
the longest side. (This is intuitively obvious, but make sure your proof is complete.)

3. (Kürschák, 1954) Suppose a convex quadrilateral ABCD satisfies AB � BD ¤ AC �
CD. Prove that AB   AC.

4. (USAMO 1999/2) Let ABCD be a cyclic quadrilateral. Prove that

|AB � CD| � |AD �BC| ¥ 2|AC �BD|.

5. (Titu Andreescu and Răzvan Gelca) Points A and B are separated by two rivers. One
bridge is to be built across each river so as to minimize the length of the shortest path
from A to B. Where should they be placed? (Each river is an infinite rectangular
strip, and each bridge must be a straight segment perpendicular to the sides of the
river. You may assume that A and B are separated from the intersection of the rivers
by a strip wider than the two rivers combined.)

6. Prove that a quadrilateral inscribed in a parallelogram has perimeter no less than twice
the length of the shorter diagonal of the parallelogram. (You may want to first consider
the case where the parallelogram is a rectangle.)

7. (IMO 1993/4) For three points P, Q, R in the plane, we define mpPQRq as the minimum
length of the three altitudes of 4PQR. (If the points are collinear, we set mpPQRq �
0.) Prove that for points A, B, C,X in the plane,

mpABCq ¤ mpABXq �mpAXCq �mpXBCq.

8. (Sylvester’s theorem) A finite set of points in the plane has the property that the line
through any two of the points passes through a third. Prove that all of the points are
collinear. (As noted in Problem 11.7.8, this result is false in the complex projective
plane.)

9. (IMO 1973/4) A soldier needs to check on the presence of mines in a region having the
shape of an equilateral triangle. The radius of action of his detector is equal to half
the altitude of the triangle. The soldier leaves from one vertex of the triangle. What
path should he follow in order to travel the least possible distance and still accomplish
his mission?

72



10. Suppose the largest angle of triangle 4ABC is not greater than 120�. Let D be the
third vertex of an equilateral triangle constructed externally on side BC. For P inside
the triangle, show that PA� PB � PC ¥ AD, and determine when equality holds.

11. Suppose the largest angle of triangle 4ABC is not greater than 120�. Deduce from
the previous problem that for P inside the triangle, PA�PB�PC is minimized when
=APB � =BPC � =CPA � 120�. The point satisfying this condition is known
variously as the Fermat point or the Torricelli point.

12. (IMO 1995/5) Let ABCDEF be a convex hexagon with AB � BC � CD and DE �
EF � FA, such that =BCD � =EFA � π{3. Suppose G and H are points in the
interior of the hexagon such that =AGB � =DHE � 2π{3. Prove that AG � GB �
GH �DH �HE ¥ CF .

9.2 Algebraic techniques

Another class of methods of attack for geometric inequalities involve invoking algebraic
inequalities. The most commonly used is the AM-GM inequality: for x1, . . . , xn ¡ 0,

x1 � � � � � xn

n
¥ px1 . . . xnq

1{n.

Often all one needs is the case n � 2, which follows from the fact that

p
`

x1 �
`

x2q
2 ¥ 0.

A more sophisticated result is the Cauchy-Schwarz inequality:

px2
1 � � � � � x2

nqpy
2
1 � � � � � y2

nq ¥ px1y1 � � � � � xnynq
2,

which one proves by noting that the difference between the left side and the right is¸
i j

pxiyj � xjyiq
2.

A trick that often makes an algebraic approach more feasible, when a problem concerns
the side lengths a, b, c of a triangle, is to make the substitution

x � s� a, y � s� b, z � s� c,

where s � pa� b� cq{2. A little algebra gives

a � y � z, b � z � x, c � x� y.

The point is that the necessary and sufficient conditions a � b ¡ c, b � c ¡ a, c � a ¡ b for
a, b, c to constitute the side lengths of a triangle translate into the more convenient conditions
x ¡ 0, y ¡ 0, z ¡ 0.
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Don’t forget about the possibility of “algebraizing” an inequality using complex numbers;
see Section 2.3.

Problems for Section 9.2

1. (IMO 1988/5) The triangle 4ABC has a right angle at A, and D is the foot of the
altitude from A. The straight line joining the incenters of the triangles4ABD,4ACD
intersects the sides AB, AC at the points K, L, respectively. S and T denote the areas
of the triangles 4ABC and 4AKL, respectively. Show that S ¥ 2T .

2. Given a point P inside a triangle ABC, let x, y, z be the distances from P to the sides
BC,CA, AB. Find the point P which minimizes

a

x
�

b

y
�

c

z
.

3. If K is the area of a triangle with sides a, b, c, show that

ab� bc� ca ¥ 4
`

3K.

4. (IMO 1964/2) Suppose a, b, c are the sides of a triangle. Prove that

a2pb� c� aq � b2pc� a� bq � c2pa� b� cq ¤ 3abc.

5. (IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that

b2cpb� cq � c2apc� aq � a2bpa� bq ¥ 0.

(Beware: you may not assume that a ¥ b ¥ c without loss of generality!)

6. (Balkan, 1996) Let O and G be the circumcenter and centroid of a triangle of circum-
radius R and inradius r. Show that OG2 ¤ R2 � 2Rr. (This proves Euler’s inequality
R ¥ 2r. If you don’t know how to compute OG2, see Problem 7.8.4.)

7. (Murray Klamkin) Let n ¡ 2 be a positive integers, and suppose that a1, . . . , an are
positive real numbers satisfying the inequality

pa2
1 � � � � � a2

nq
2 ¡ pn� 1qpa4

1 � � � � � a4
nq.

Show that for 1 ¤ i   j   k ¤ n, the numbers ai, aj, ak are the lengths of the sides of
a triangle.

8. Let 4ABC be a triangle with inradius r and circumradius R. Prove that

2r

R
¤

c
cos

A�B

2
cos

B � C

2
cos

C � A

2
.
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9. (IMO 1995 proposal) Let P be a point inside the convex quadrilateral ABCD. Let

E, F, G, H be points on sides AB, BC,CD,DA, respectively, such that
ÐÑ
PE is parallel

to
ÐÑ
BC,

ÐÑ
PF is parallel to

ÐÑ
AB,

ÐÑ
PG is parallel to

ÐÑ
DA, and

ÐÑ
PH is parallel to

ÐÑ
CD. Let

K, K1, K2 be the areas of ABCD, AEPH, PFCG, respectively. Prove that`
K ¥

a
K1 �

a
K2.

9.3 Trigonometric inequalities and convexity

A third standard avenue of attack involves reducing a geometric inequality to an inequality
involving trigonometric functions. Such inequalities can often be treated using Jensen’s
inequality for convex functions.

A convex function is a function fpxq satisfying the rule

fptx� p1� tqyq ¤ tfpxq � p1� tqfpyq

for all x, y and all t P r0, 1s. Geometrically, this says that the area above the graph of f is a
convex set, i.e. that chords of the graph always lie above the graph. Equivalently, tangents
to the graph lie below.

Those of you who know calculus can check whether f is convex by checking whether
the second derivative of f (if it exists) is always positive. (In some calculus texts, a convex
function is called “concave upward”, or occasionally is said to “hold water”.) Also, if f is
continuous, it suffices to check the definition of convexity for t � 1{2.

The key fact about convex functions is Jensen’s inequality, whose proof (by induction
on n) is not difficult.

Fact 9.3.1. Let fpxq be a convex function, and let t1, . . . , tn be nonnegative real numbers
adding up to 1. Then for all x1, . . . , xn,

fpt1x1 � � � � � tnxnq ¤ t1fpx1q � � � � � tnfpxnq.

For example, the convexity of the function p� log xq implies the AM-GM inequality.
As a simple example, note that in triangle 4ABC, we have =A � =B � =C � π, and

the function fpxq � sin x is concave, so

sin A� sin B � sin C ¥ 3 sin π{3 � 3
`

3{2.

In other words, the minimum perimeter of a triangle inscribed in a fixed circle is achieved
by the equilateral triangle.

Also note that convexity can be used in apparently purely geometric circumstances,
thanks to the following fact. (Remember, it suffices to verify this for t � 1{2, which is easy.)

Fact 9.3.2. The distance from a fixed point P is a convex function on the plane. That is,
for any points P, Q, R, the distance from P to the point (in vector notation) tQ � p1 � tqR
is a convex function of t.
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Problems for Section 9.3

1. ([2], 2.7) Show that in triangle 4ABC, sin A sin B sin C ¤ 3
8

`
3.

2. Prove that the Brocard angle of a triangle cannot exceed π{6. (Hint: use Problem 7.6.1,
but beware that cot is only convex in the range p0, π{2s.)

3. ([2], 2.15) Let α, β, γ be the angles of a triangle. Prove that

sin
β

2
sin

γ

2
� sin

γ

2
sin

α

2
� sin

α

2
sin

β

2
¤

3

4
.

4. Prove that of the n-gons inscribed in a circle, the regular n-gon has maximum area.

5. ([2], 2.59) Prove that in triangle 4ABC,

1� cos A cos B cos C ¥
`

3psin A sin B sin Cq.

6. Show that for any convex polygon S, the distance from S to a point P (the length of
the shortest segment joining P to a point on S) is a convex function of P .

7. (Junior Balkaniad, 1997) In triangle 4ABC, let D, E, F be the points where the
incircle touches the sides. Let r, R, s be the inradius, circumradius, and semiperimeter,
respectively, of the triangle. Prove that

2rs

R
¤ DE � EF � FD ¤ s

and determine when equality occurs.

8. (MOP 1998) Let 4ABC be a acute triangle with circumcenter O, orthocenter H and
circumradius R. Show that for any point P on the segment OH,

PA� PB � PC ¤ 3R.

9.4 The Erdős-Mordell inequality

The following inequality is somewhat more sophisticated than the ones we have seen so far,
but is nonetheless useful. It was conjectured by the Hungarian mathematician Pál (Paul)
Erdős (1913-1996) in 1935 and first proved by Louis Mordell in the same year.

Theorem 9.4.1. For any point P inside the triangle 4ABC, the sum of the distances from

P to A, B, C is at least twice the sum of the distances from P to
ÐÑ
BC,

ÐÑ
CA,

ÐÑ
AB. Furthermore,

equality occurs only when ABC is equilateral and P is its center.
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Proof. The unusually stringent equality condition should suggest that perhaps the proof
proceeds in two stages, with different equality conditions. This is indeed the case.

Let X, Y, Z be the feet of the respective perpendiculars from P to BC,CA, AB. We will
first prove that

PA ¥
AB

BC
PY �

AC

BC
PZ. (9.4.1.1)

The only difference between most proofs of this theorem is in the proof of the above inequality.
For example, rewrite (9.4.1.1) as

PA sin A ¥ PY sin C � PZ sin B,

recognize that PA sin A � Y Z by the Extended Law of Sines, and observe that the right

side is the length of the projection of Y Z onto the line
ÐÑ
BC. Equality holds if and only if

ÐÑ
Y Z is parallel to

ÐÑ
BC.

Putting (9.4.1.1) and its analogues together, we get

PA� PB � PC ¥ PX

�
CA

AB
�

AB

CA



� PY

�
AB

BC
�

BC

AB



� PZ

�
BC

CA
�

CA

BC



,

with equality if and only if 4XY Z is homothetic to 4ABC; this occurs if and only if P is
the circumcenter of 4ABC (Problem 1). Now for the second step: we note that each of the
terms in parentheses is at least 2 by the AM-GM inequality. This gives

PA� PB � PC ¥ 2pPX � PY � PZq,

with equality if and only if AB � BC � CA.

Problems for Section 9.4

1. With notation as in the above proof, show that the triangles 4XY Z and 4ABC are
homothetic if and only if P is the circumcenter of 4ABC.

2. Give another proof of (9.4.1.1) by comparing P with its reflection across the angle
bisector of A. (Beware: the reflection may lie outside of the triangle!)

3. Solve problem 7.6.4 using the Erdős-Mordell inequality.

4. (IMO 1996/5) Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC
is parallel to EF , and CD is parallel to FA. Let RA, RC , RE denote the circumradii
of triangles 4FAB,4BCD,4DEF , respectively, and let P denote the perimeter of
the hexagon. Prove that

RA �RC �RE ¥
P

2
.

5. (Nikolai Nikolov) The incircle k of triangle4ABC touches the sides at points A1, B1, C1.
For any point K on k, let d be the sum of the distances from K to the sides of the
triangle 4A1B1C1. Prove that KA�KB �KC ¡ 2d.
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9.5 Additional problems

Now it’s your turn. Which technique(s) will help in the following instances?

Problems for Section 9.5

1. Prove that of all quadrilaterals with a prescribed perimeter P , the square has the
greatest area. Can you also prove the analogous result for polygons with any number
of sides?

2. What is the smallest positive real number r such that a square of side length 1 can be
covered by three disks of radius r?

3. Let r be the inradius of triangle 4ABC. Let rA be the radius of a circle tangent to
the incircle as well as to sides AB and CA. Define rB and rC similarly. Prove that

rA � rB � rC ¥ r.

4. Prove that a triangle with angles α, β, γ, circumradius R, and area A satisfies

tan
α

2
� tan

β

2
� tan

γ

2
¤

9R2

4A
.

5. Let a, b, c be the sides of a triangle with inradius r and circumradius R. Show that∣∣∣∣1� 2a

b� c

∣∣∣∣ ¤
c

1�
2r

R
.

6. Two concentric circles have radii R and R1 respectively, where R1 ¡ R. ABCD
is inscribed in the smaller circle and A1B1C1D1 in the larger one, with A1 on the
extension of CD, B1 on that of DA, C1 on that of AB, and D1 on that of BC. Prove
that the ratio of the areas of A1B1C1D1 and ABCD is at least R2

1{R
2.

7. With the same notation, prove that the ratio of the perimeters of A1B1C1D1 and
ABCD is at least R{r.
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Part III

Some roads to modern geometry
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Chapter 10

Inversive and hyperbolic geometry

One of the features of “modern” geometry is the inclusion of transformations which are more
drastic than those considered in Chapter 3. In this chapter, we consider some transformations
which preserve angles but not distances or areas or even collinearity. One singularly useful
class of examples is the inversions; these give simple proofs both of classic theorems and of
competition problems. Moreover, they can be used to give a simple derivation of the basic
properties of hyperbolic geometry.

The introduction of inversion requires new concepts of what a “plane” is and what “trans-
formations” are. In particular, though inversion does not preserve lines, it preserves angles
in a sense we will make precise. This puts inversion in the rich class of conformal transfor-
mations, which play a key role in applications (e.g., in physics).

10.1 Inversion

The notion of an inversion is a natural extension of the concept of reflection across a line,
once one accepts the idea that lines are really just “circles of infinite radius”. Indeed, one
can uniformly characterize lines and circles using directed angles: given three points A, B, C,
the set of points D for which >ADB � >ACB, together with A, B, C, forms either a line or
a circle. So it is not too much of a stretch to imagine a “reflection across a circle”; indeed,
this thought seems to have occurred to Apollonius of Perga, who is thought (by virtue of
descriptions given by later authors) to have introduced inversion in his lost treatise Plane
Loci. However, only in modern times did the technique come into common currency; the
first surviving appearance of inversion seems to be in the work of the Swiss geometer Jakob
Steiner (1796–1863), some of whose profitable use of the technique we will see shortly.

Let O be a point in the plane, and let r be a positive real number. The inversion with
center O and radius r is the map of the plane minus the point O to itself, carrying the point

P � O to the point P 1 on the ray
ÝÑ
OP such that OP � OP 1 � r2. Since specifying a point

and a positive real number is the same as specifying a circle (the point and the positive
real corresponding to the center and radius, respectively, of the circle), we can also speak of
inversion through a circle using the same definition.
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Figure 10.1.1: Inversion through a circle.

What happens to the point O under inversion? Points near O get sent very far away, in
all different directions, so there is no good place to put O itself. To rectify this, we define
the inversive plane as the usual plane with one additional point 8, thought of as being a
“point at infinity”. We view an inversion centered at O as a transformation on the entire
inversive plane by declaring that O and 8 are inverses of each other.

As an aside, we note a natural interpretation of the inversive plane. Under stereographic
projection (used in some maps), the surface of a sphere, minus the North Pole, is mapped
to a plane tangent to the sphere at the South Pole as follows: a point on the sphere maps
to the point on the plane collinear with the given point and the North Pole. Then the point
at infinity corresponds to the North Pole, and the inversive plane corresponds to the whole
sphere. In fact, inversion through the South Pole with the appropriate radius corresponds
to reflecting the sphere through the plane of the equator!

Figure 10.1.2: A stereographic projection.

Returning to Euclidean geometry, we now establish some important properties of inver-
sion. We first make an easy but important observation.

Fact 10.1.1. If O is the center of an inversion taking P to P 1 and Q to Q1, then the triangles
4OPQ and 4OQ1P 1 are oppositely similar.

In particular, we have that >OP 1Q1 � �>OQP , a fact underlying our next proof.
By an inversive circle in the inversive plane, we will mean either a circle in the Euclidean

plane, or a line in the Euclidean plane together with the extra point 8.

Theorem 10.1.2. The image of an inversive circle under an inversion is an inversive circle.

Proof. Let A, B, C,D be four points on an inversive circle, and let A1, B1, C 1, D1 be the
respective images of A, B, C,D under an inversion with center O. We now chase directed
angles, using the similar triangles of Fact 10.1.1:

>A1B1C 1 � >A1B1O �>OB1C 1

� >BAO �>OCB

� >BAD �>DAO �>OCD �>DCB

� >DAO �>OCD

� >A1D1O �>OD1C 1

� >A1D1C 1.

We see that A1, B1, C 1, D1 lie on an inversive circle as well.
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Figure 10.1.3: Proof of Theorem 10.1.2.

Notice the way the angles are broken up and recombined in the above proof. In some
cases, inversion can turn a constraint involving two or more angles in different places into a
constraint about a single angle, which then is easier to work with. Some examples can be
found in the problems.

Inversion also turns out to “reverse the angles between lines”. Since lines are sent to
circles in general, we will have to define the angle between two circles to make sense of this
statement.

Given two inversive circles ω1 and ω2, the (directed) angle between them at one of their
intersections P is defined as the (directed) angle from the tangent to ω1 at P to the tangent
of ω2 at P . We say that two inversive circles are orthogonal if the angle between them is
π{2. Note that absent a choice between the two points of intersection, the angle between
two circles is only well-defined up to sign as an angle modulo π; however, orthogonality does
not depend on this choice. Note also that a line and a circle are orthogonal if and only if
the line passes through the center of the circle.

Fact 10.1.3. The directed angle between circles (at a chosen intersection) is reversed under
inversion.

Distances don’t fare as well under inversion, but one can say something using Fact 10.1.1.

Fact 10.1.4 (Inversive distance formula). If O is the center of an inversion of radius r
sending P to P 1 and Q to Q1, then

P 1Q1 � PQ �
r2

OP �OQ
.

Problems for Section 10.1

1. Deduce Theorem 10.1.2 from Problem 4.2.5 (or use the above proof to figure out how
to do that problem).

2. Give another proof of Theorem 10.1.2 using the converse of the power-of-a-point the-
orem (Fact 6.1.2) and Fact 10.1.4.

3. The angle between two lines through the origin is clearly preserved under inversion.
Why doesn’t this contradict the fact that inversion reverses angles?

4. (IMO 1996/2) Let P be a point inside triangle 4ABC such that

=APB �=ACB � =APC �=ABC.

Let D, E be the incenters of triangles4APB,4APC, respectively. Prove that AP, BD, CE
meet in a point. (Many other solutions are possible; over 25 were submitted by con-
testants at the IMO!)
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5. (IMO 1998 proposal) Let ABCDEF be a convex hexagon such that =B�=D�=F �
360� and

AB

BC
�
CD

DE
�
EF

FA
� 1.

Prove that
BC

CA
�
AE

EF
�
FD

DB
� 1.

6. Prove that the following are equivalent:

1. The points A and B are inverses through the circle ω.

2. The line
ÐÑ
AB and the circle with diameter AB are both orthogonal to ω.

3. ω is a circle of Apollonius with respect to A and B.

In particular, conclude that a circle distinct from ω is fixed (as a whole, not pointwise)
by inversion through ω if and only if it is orthogonal to ω.

7. Give yet another proof of Theorem 10.1.2 using complex numbers and the circle of
Apollonius (Theorem 6.5.1).

8. Show that a set of circles is coaxial if and only if there is a circle orthogonal to all of
them. Deduce that coaxial circles remain that way under inversion. Also, try drawing
a family of coaxial circles and some circles orthogonal to them; the picture is very
pretty.

9. Prove that any two nonintersecting circles can be inverted into concentric circles. (This
will be used in Theorem 10.2.2 below.)

10.2 Inversive magic

As noted earlier, we know about inversion largely through the work of Jakob Steiner. Steiner
used the technique to give dazzlingly simple proofs of a number of difficult-looking state-
ments. Here we present but a few examples.

We start with a classical result attributed to Pappus of Alexandria. It is one of a number
of results concerning a figure bounded by three semicircles with diameters AB, BC,AC,
where A, B, C are three points lying on a line in that order. Such a figure was first consirede
by Archimedes, who called it an arbelos1.

Theorem 10.2.1 (Pappus). Let ω be a semicircle with diameter AB. Let ω1 and ω2 be two
semicircles externally tangent to each other at C, and internally tangent to ω at A and B,
respectively. Let C1, C2, . . . be a sequence of circles, each tangent to ω and ω1, such that Ci

1The word “arbelos” in Greek refers to a shoemaker’s knife, which presumably looked something like the
figure Archimedes was considering.
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is tangent to Ci�1 and C1 is tangent to ω2 (as in Figure 10.2.1). Let rn be the radius of Cn,

and let dn be the distance from the center of Cn to
ÐÑ
AB. Then for all n,

dn � 2nrn.

Figure 10.2.1: An arbelos, and a theorem of Pappus.

Proof. Perform an inversion with center A, and choose the radius of inversion so that Cn

remains fixed. Then ω and ω1 map to lines perpendicular to
ÐÑ
AB and tangent to Cn, and

Cn�1, . . . , C1 to a column of circles between the lines, with ω1
2 at the bottom of the column.

The relation dn � 2nrn is now obvious.

Figure 10.2.2: Proof of Theorem 10.2.1.

The following theorem is known as Steiner’s porism.

Theorem 10.2.2. Suppose two nonintersecting circles have the property that one can fit a
“ring” of n circles between them, each tangent to the next. Then one can do this starting
with any circle tangent to both given circles.

Proof. By Problem 10.1.9, a suitable inversion takes the given circles to concentric circles,
while preserving tangency of circles. The result is now obvious.

Figure 10.2.3: Steiner’s porism (Theorem 10.2.2) and its proof.

Problems for Section 10.2

1. Suppose that, in the hypotheses of Pappus’s theorem, we assume that C0 is tangent

to ω, ω1 and the line
ÐÑ
AB (instead of the semicircle ω2). Show that in this case dn �

p2n� 1qrn.

2. (Romania, 1997) Let ω be a circle, and let
ÐÑ
AB be a line not intersecting ω. Given a

point P0 on ω, define the sequence P0, P1, . . . as follows: Pn�1 is the second intersection

with ω of the line
ÐÝÑ
BQn, where Qn is the second intersection of the line

ÐÝÑ
APn with ω.

Prove that for a positive integer k, if P0 � Pk for some choice of P0, then P0 � Pk for
any choice of P0.
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10.3 Inversion in practice

So far we have seen that inversion can be used to give spectacular proofs of a few results.
However, it is much more useful than that; it can often be applied to solve much more
mundane problems. The paradigm for doing this is almost always the following: invert the
given picture and its conclusion, thus transforming the original problem into a new problem
on a new diagram, then solve the new problem. In some cases, one must also superimpose
the original and inverted diagrams (as in the proof of Theorem 10.2.1) and/or compare
information in the two diagrams (e.g. using Fact 10.1.4).

A general principle behind this method is that it is easier to deal with lines than circles.
Hence if one wishes to perform an inversion on a geometric diagram, one should center the
inversion at a point which is “busy” in the sense of having many relevant circles and lines
passing through it.

Problems for Section 10.3

1. Make up an inversion problem by reversing the paradigm: start with a result that you
know, invert about some point, and see what you get. The tricky part is choosing
things well enough so that the resulting problem doesn’t have an obvious busy point;
such a problem would be too easy!

2. Let C1, C2, C3, C4 be circles such that Ci and Ci�1 are externally tangent for i � 1, 2, 3, 4
(where C5 � C1). Prove that the four points of tangency are concyclic.

3. (Romania, 1997) Let 4ABC be a triangle, let D be a point on side BC, and let ω
be the circumcircle of 4ABC. Show that the circles tangent to ω,AD, BD and to
ω,AD, DC are tangent to each other if and only if =BAD � =CAD.

Figure 10.3.1: Problem 10.3.3.

4. (Russia, 1995) Draw a semicircle with diameter AB and center O, then draw a line

which intersects the semicircle at C and D and which intersects line
ÐÑ
AB at M , such

that MB   MA and MD   MC. Let K be the second point of intersection of the
circumcircles of triangles 4AOC and 4DOB. Prove that =MKO is a right angle.

5. (USAMO 1993/2) Let ABCD be a convex quadrilateral with perpendicular diagonals

meeting at O. Prove that the reflections of O across
ÐÑ
AB,

ÐÑ
BC,

ÐÑ
CD,

ÐÑ
DA are concyclic.

(For an added challenge, find a non-inversive proof as well.)

6. (Apollonius’s problem) Given three nonintersecting circles, how many circles are tan-
gent to all three? And how can they be constructed with straightedge and compass?

7. (IMO 1994 proposal) The incircle of 4ABC touches BC,CA, AB at D, E, F , respec-
tively. Let X be a point inside 4ABC such that the incircle of 4XBC touches BC

86



at D also, and touches CX and XB at Y and Z, respectively. Prove that EFZY is a
cyclic quadrilateral.

8. (Israel, 1995) Let PQ be the diameter of semicircle H. The circle O is internally
tangent to H and is tangent to PQ at C. Let A be a point on H, and let B be a point

on PQ such that
ÐÑ
AB is perpendicular to

ÐÑ
PQ and is also tangent to O. Prove that

ÐÑ
AC

bisects =PAB.

9. Give an inversive proof of Ptolemy’s inequality (Theorem 2.3.1).

10. (IMO 1993/2) Let A, B, C,D be four points in the plane, with C, D on the same side

of line
ÐÑ
AB, such that AC � BD � AD � BC and =ADB � π{2 � =ACB. Find the

ratio pAB � CDq{pAC �BDq and prove that the circumcircles of triangles 4ACD and
4BCD are orthogonal.

11. (Iran, 1995) Let M, N, P be the points of intersection of the incircle of 4ABC with
sides BC, CA, AB, respectively. Prove that the orthocenter of 4MNP , the incenter
of 4ABC, and the circumcenter of 4ABC are collinear.

12. (MOP 1997) Let 4ABC be a triangle and let O be its circumcenter. The lines
ÐÑ
AB

and
ÐÑ
AC meet the circumcircle of triangle 4BOC again at B1 and C1, respectively.

Let D be the intersection of lines
ÐÑ
BC and

ÐÝÑ
B1C1. Show that the circle tangent to

ÐÑ
AD

at A and having its center on
ÐÝÑ
B1C1 is orthogonal to the circle with diameter OD.

13. (Russia, 1993) Let ABCD be a convex cyclic quadrilateral, and let O be the intersection
of diagonals AC and BD. Let ω1 and ω2 be the circumcircles of triangles 4ABO and
4CDO, respectively, and let ω1 and ω2 meet at O and K. The line through O parallel

to
ÐÑ
AB meets ω1 again at L, and the line through O parallel to

ÐÑ
CD meets ω2 again

at M . Let P and Q be points on segments OL and OM , respectively, such that
OP {PL � MQ{QO. Prove that O, K, P,Q lie on a circle.

10.4 Hyperbolic geometry: an historical aside

One cannot give a survey of “modern” geometry without including hyperbolic, or non-
Euclidean, geometry. Originally viewed as a pathological construction, it was later realized
in several ways within the confines of Euclidean geometry, and thus is no less valid! Subse-
quently, hyperbolic geometry has become omnipresent within mathematics, and even within
physics via Einstein’s theory of relativity.

To understand the relevance of hyperbolic geometry, we must momentarily overturn our
revisionist construction of the Euclidean plane and go back to the axiomatic definition. It
relies on five postulates, which we loosely translate into modern language.

1. Any two points are the endpoints of a line segment.

87



2. Any line segment can be extended to a straight line.

3. There exists a circle with any given radius and center.

4. Any two right angles are congruent to each other.

5. If two lines intersect a third and the interior angles on one side are both less than π,
then the two lines intersect somewhere on that side of the third line.

One cannot know whether Euclid realized it was necessary to include the fifth postulate,
the so-called parallel postulate. For many centuries, it was felt that Euclid had simply
fallen short in simplifying the axioms, and that it would be possible to deduce the parallel
postulate from the other four. It was finally realized by Gauss that this is impossible, as
there is actually a perfectly sensible (if highly counterintuitive) geometry in which the parallel
postulate failed while the other postulates continue to hold. Gauss, no fan of controversy2,
never published his findings, leaving them to be rediscovered independently by János Bolyai
(1802–1860) and Nikolai Ivanovich Lobachevsky3 (1792–1856).

As noted above, one proves the independence of the parallel postulate by constructing a
“model geometry” in which the parallel postulate fails while the other postulates continue
to hold. This is done by building a geometric situation and carefully relabeling the objects;
we will do this in the next section.

10.5 Poincaré’s models of hyperbolic geometry

As described in the previous section, one typically builds spaces of “hyperbolic geometry” by
realizing them using constructions within Euclidean geometry. We now describe two related
methods for doing this, introduced by Henri Poincaré (1854–1912) .

In the disc model , we take the underlying set of points to be the interior of an open disc
in the Euclidean plane. The lines of the disc model are the lines and circles orthogonal to the
boundary of the disc, or rather the pieces of these lying within the disc. See Figure 10.5.1.

Figure 10.5.1: Points and lines in the disc model.

In the halfplane model , we take the underlying set of points to be those px, yq P R2 with
y ¡ 0. The lines of the disc model are the lines and circles orthogonal to the x-axis, or rather
the pieces of these lying within the halfplane.

2Although the consistency of non-Euclidean geometry is a nonissue for mathematicians in our time, it
continues to cause controversy among nonmathematicians, who have trouble shaking the belief that there
could be any alternative to the Euclidean setting. An infamous example is columnist Marilyn vos Savant,
who published a notorious book attacking the work of Wiles on Fermat’s Last Theorem on precisely these
long-discredited grounds.

3There has been some dispute over whether these rediscoveries were truly independent of each other and
of Gauss. This dispute is satirized in a famous song by mathematician/satirist Tom Lehrer.
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Figure 10.5.2: Points and lines in the halfplane model.

At this point it is clear that one can transform the disc model and the halfplane model
into each other by inversion: inverting through a point on the boundary of the disc turns the
disc model into the halfplane model, and one gets back by inverting through a point below
the x-axis. We may thus safely refer to either one as the hyperbolic plane , as long as we
only refer to concepts which carry identical meanings in both model. This includes lines of
the model; by virtue of the angle-preserving property of inversion, this also includes angles
between lines.

Fact 10.5.1. Any two points in the hyperbolic plane lie on a unique line. Any two lines in
the hyperbolic plane intersect in at most one point.

By contrast with the Euclidean plane, there are multiple lines through a given point which
fail to intersect a given line not through that point. That is, there are multiple parallels to
a given line through a given point not on the line.

Figure 10.5.3: Multiple parallels in the hyperbolic plane.

It is reasonable to ask why one needs two (or more, but two will suffice for now) different
models of the hyperbolic plane. One answer is that different symmetries appear more readily
in each model, so having multiple models makes it easier to visualize the full set of symmetries
of the hyperbolic plane. We illustrate this with an example.

By a hyperbolic transformation, we will mean a bijection from the hyperbolic plane to
itself carrying lines to lines and preserving angles. For example, in the disc model, one may
rotate around the center of the disc; in the halfplane model, one may make a horizontal
translation or a homothety with positive ratio and center on the x-axis.

Theorem 10.5.2. (a) There exists a hyperbolic transformation carrying any given point
to any other given point.

(b) There exists a hyperbolic transformation carrying any given line to any other given
line.

(c) Given a point P in the hyperbolic plane, there exists a hyperbolic transformation car-
rying any given line through P to any other given line through P .

Proof. Fix an isomorphism between the disc model and the halfplane model. Let O be the
center of the disc model, and let O1 be its image in the halfplane model.

(a) This is clear in the halfplane model, using dilations and translations.

(b) On one hand, any line in the halfplane model can be translated to a line through O1.
On the other hand, any two lines through O in the disc model are related by a rotation.
This yields the claim.
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(c) By (b), it suffices to check this for the point O in the disc model, which is clear.

10.6 Hyperbolic distance

We next wish to define a notion of distance between two points in the hyperbolic plane.
Before doing this, we first check that there are not “too many” hyperbolic transformations.

Theorem 10.6.1. Let A, B, C be three distinct points in the hyperbolic plane, which lie on
a line in that order. Then there is no hyperbolic transformation fixing A and taking B to C.

Proof. By Theorem 10.5.2, we may reduce to the case where A is the center of the disc
model and the line ` through A, B, C is diametric. Let `1, `2 be the lines through B, C,
respectively, perpendicular to `. Let m be a line through A such that in the Euclidean
plane, the extensions of `2 and m meet on the boundary of the disc. Note that m does not
meet `2 in the hyperbolic plane, but it does meet `1.

Figure 10.6.1: Proof of Theorem 10.6.1.

Suppose now that there is a hyperbolic transformation fixing A and taking B to C. Then
` maps to `, and by angle preservation, `1 maps to `2. Again by angle preservation, m maps
either to m or to its reflection across `. In either case, the two intersecting lines m, `1 are
carried to nonintersecting lines, contradiction.

Let A, B be two distinct points in the hyperbolic plane; we now define the distance
dhpA, Bq as follows. (If A � B, we just set dhpA, Bq � 0.) Apply Theorem 10.5.2 to map
A, B to points A1, B1 which lie on a vertical line in the halfplane model. Without loss of
generality, we may assume A1 lies below B1. Let dA, dB be the Euclidean distances between
A, B and the x-axis, and define

dhpA, Bq � log dB � log dA;

this is unambiguous by Theorem 10.6.1, since we cannot use a hyperbolic transformation to
move B1 up or down the line while fixing A1.

Fact 10.6.2. The hyperbolic distance satisfies the following properties.

(a) If points A, B, C lie on a line in that order, then dhpA, Cq � dhpA, Bq � dhpB, Cq.

(b) For any points A, B, C,D, we have dhpA, Bq � dhpC, Dq if and only if there is a
hyperbolic transformation sending A to B and sending C to D.
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Notice something funny going on: the definition of a hyperbolic transformation only
required preservation of lines and angles, and yet these also preserve distances. This is in
contrast with the Euclidean plane, where there is a clear distinction between similarities
and rigid motions. Somehow the hyperbolic plane has an inherent “sense of scale” that
the Euclidean plane does not; this can be explained by formalizing the statement that the
“curvature” of the Euclidean plane is zero but that of the hyperbolic plane is nonzero.

Problems for Section 10.6

1. Give a formula to compute distances in the disc model.

2. Prove that any line in the hyperbolic plane contains pairs of points whose distance is
arbitrarily large; i.e., the length of a line is infinite.

3. Prove that any map of the hyperbolic plane to itself that carries lines to lines preserves
(undirected) angles, and hence is a hyperbolic transformation. That is, there is no
analogue in the hyperbolic plane of affine transformations which are not rigid motions.

10.7 Hyperbolic triangles

A (line) segment in the hyperbolic plane will be the segment or arc between two points on a
hyperbolic line; we refer to the distance between the two endpoints also as the length of the
segment. With this definition, we may now speak about polygons in the hyperbolic plane,
and in particular of triangles.

Theorem 10.7.1. The sum of the angles in a hyperbolic triangle is always strictly less than
π.

Proof. Again, fix an isomorphism between the disc model and the halfplane model. Let O
be the center of the disc model, and let O1 be its image in the halfplane model. Given a
triangle in the halfplane model, we can apply dilations and translations corresponding to
hyperbolic transformations to create a congruent triangle with O1 in its interior. Then the
result is clear: each angle of the hyperbolic triangle is less than the corresponding angle of
the ordinary triangle with the same vertices.

Figure 10.7.1: Proof of Theorem 10.7.1.

The difference between π and the sum of the angles in a hyperbolic triangle is called the
angular defect of the triangle. It is additive in the sense that if A, B, C are three points
in the hyperbolic plane, and D is a point on the hyperbolic segment BC, then the angular
defect of the hyperbolic triangle ABC is the sum of the angular defects of ABD and ADC.
It can thus be used as a measure of area for hyperbolic triangles.

Problems for Section 10.7
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Figure 10.7.2: Additivity of angular defect.

1. Prove that any two hyperbolic triangles which have the same angles are congruent.
Yes, you read that correctly! This is another case where the hyperbolic plane exhibits
an intrinsic “sense of scale”.
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Chapter 11

Projective geometry

Projective geometry is the study of geometric properties which are invariant under “changes
of perspective”; this eliminates properties like angles and distances but retains properties
like collinearity and concurrence. The formalism of projective geometry makes a discussion
of such properties possible, and exposes some remarkable facts, such as the duality of points
and lines.

The history of projective geometry is a remarkable instance of art and science feeding
off one another.1 Based on the optics studies of the Arabic mathematician Alhazen (Ibu
Ali al-Hasan ibn al-Haytham) (965–1040), several early Renaissance artists2 attempted to
develop a style of visual depiction that presented the eye with a truer semblance of three-
dimensional space than did earlier, flatter styles. The discovery of the principle of linear
perspective (the idea that all parallel lines appear to converge at a single point) is credited
to Filippo Brunelleschi (1377–1446). This led to a flurry of activity, culminating in the work
of Girard Desargues (1591–1661), which introduced projective geometry as we now it.

In the modern era, the real power of projective geometry lies within the realm of algebraic
geometry, i.e., the study of geometric objects defined by polynomial equations. This study,
implicit in the coordinate geometry with which this book begins, took off in earnest late in
the 19th century, and remains one of the most vital branches of present-day mathematics
research. We end the chapter with a glimpse in this direction.

11.1 The projective plane

We begin with a lengthy description of the formalism of the projective plane. The impatient
reader may wish to read only the next paragraph at first, then skip to the later sections and
come back to this section as needed.

The projective plane consists of the standard Euclidean plane, together with a set of
points called points at infinity, one for each collection of parallel lines. We say that a line

1The MacTutor archive, mentioned in the introduction, includes a nice description of this history.
2To be fair, the distinction between artists and scientists was somewhat blurred at this period, whence

the modern phrase “Renaissance man” for a versatile individual.
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passes through the point at infinity corresponding to its direction (and no others), and that
all of the points at infinity lie on a line at infinity. Note that three parallel lines now
indeed have a common point at infinity, which retroactively justifies our calling such lines
“concurrent”.

An alternate description of the projective plane turns out to be quite useful, and corre-
sponds more closely to the artists’ conception. View the Euclidean plane as some plane in
three-dimensional space, and fix a point O not on the plane (corresponding to the eye). Then
each point on the plane corresponds to a line through O passing through that point, but not
all lines through O correspond to points on the Euclidean plane. In fact, they correspond
to the points at infinity. In other words, we can identify the projective plane with the set of
lines in space passing through a fixed point.

This description also yields a natural coordinate system for the projective plane, using
what are known as homogeneous coordinates. Each point in the projective plane can be
specified with a triple of numbers rx : y : zs, where x, y, z are not all zero. Be careful,
though: for any nonzero real number λ, rx : y : zs and rλx : λy : λzs are the same point!
(Hence the name “homogeneous coordinates”.) The colons are meant to remind you that it
is the ratios between the coordinates that are well-defined, not the individual coordinates
themselves.

How are homogeneous coordinates related to the usual Cartesian coordinates on the
Euclidean plane? If we embed the Euclidean plane in space as the plane z � 1, then the
point with Cartesian coordinates px, yq has homogeneous coordinates rx : y : 1s, and the
points at infinity are the points of the form rx : y : 0s for some x, y not both zero.

11.2 Projective transformations

The original definition of a projective transformation corresponded to the process of pro-
jecting an image in the “real world” onto an artist’s canvas. Again, fix a point O in three-
dimensional space, and now select two planes not passing through O. The mapping that

takes each point P on the first plane to the intersection of the line
ÐÑ
OP with the second plane

was defined as a projective transformation. (Do you see why this map makes sense over the
whole projective plane?)

One can also give an algebraic description of projective transformations that accommo-
dates degenerate cases slightly more easily. In terms of homogeneous coordinates, a projective
transformation takes the form

rx : y : zs ÞÑ rax� by � cz : dx� ey � fz : gx� hy � izs,

where a, . . . , i are numbers such that the 3� 3 matrix��a b c
d e f
g h i

�
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is invertible, i.e., its determinant

aei� bfg � cdh� ceg � afh� bdi

is nonzero. From this description it is clear that affine transformations are projective as well,
since they occur when g � h � 0. Since we have two additional parameters (it looks like
three, but by homogeneity one parameter is superfluous), the following analogue of Fact 3.5.2
is no surprise.

Fact 11.2.1. Any four points, no three collinear, can be mapped to any other four such
points by a unique projective transformation.

The most common use of a projective transformation in problem-solving is to map a
particular line to the point at infinity. (As with inversion, it pays to look for a “busy” line
for this purpose.) If the statement to be proved is well-behaved under projective transfor-
mations, this can yield drastic simplifications. The “well-behaved” concepts mainly consist
of incidence properties between points and lines (concurrence, collinearity, and the like); as
with affine transformations, angles and distances are not preserved, nor are areas or ratios
of lengths along segments (unlike affine transformations).

We demonstrate the power of projection by reproving Desargues’s theorem (Theorem 5.2.2).

Theorem 11.2.2. Given triangles 4ABC and 4DEF , the points
ÐÑ
AB X

ÐÑ
DE,

ÐÑ
BC X

ÐÑ
EF ,

ÐÑ
CAX

ÐÑ
FD are collinear if and only if the lines

ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF are concurrent.

Proof. Apply a projective transformation to place the points
ÐÑ
AB X

ÐÑ
DE and

ÐÑ
BC X

ÐÑ
EF on

the line at infinity. If triangles 4ABC and 4DEF are perspective from a line, they now

have parallel sides and so are homothetic; thus the lines
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF concur at the center

of homothety (or at a point at infinity, in case 4ABC and 4DEF are now congruent).

Conversely, if the lines
ÐÑ
AD,

ÐÑ
BE,

ÐÑ
CF concur at P , consider the homothety centered at A

carrying A to D. It preserves the line
ÐÑ
BE and carries the line

ÐÑ
AB to the parallel line

ÐÑ
DE

through B, so it maps D to E. Similarly, the homothety maps C to F , and so
ÐÑ
CA and

ÐÑ
FD

are also parallel, implying that the points
ÐÑ
AB X

ÐÑ
DE,

ÐÑ
BC X

ÐÑ
EF ,

ÐÑ
CA X

ÐÑ
FD are collinear

along the line at infinity.

Beware that angles, circles, and other “metric” objects are not preserved under projection;
we will learn more about getting around this difficulty later in the chapter.

Problems for Section 11.2

1. Use a projective transformation to give an alternate proof of Pappus’s theorem.

2. Prove that the center of a circle drawn in the plane cannot be constructed with straight-
edge alone.

3. (Original) Let ABCDE be the vertices of a convex pentagon, and let F � BC XDE,

G � CDXEA, H � DE XAB, I � EAXBC, J � AB XCD. Show that
ÐÑ
BDX

ÐÑ
CE

lies on the line
ÐÑ
AF if and only if

ÐÑ
GH X

ÐÑ
IJ does.
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Figure 11.2.1: Problem 11.2.3.

11.3 A conic section

We now introduce the notion of a conic section, which comes to us from the work of the an-
cient geometer Apollonius (whose name has arisen already in connection with Theorem 6.5.1).

A conic section is classically defined as a cross-section of a right circular cone by a plane
not passing through a vertex, where the cone extends infinitely far in both directions. The
section is a called an ellipse, a parabola, or a hyperbola, depending on whether the angle
between the plane and the axis of the cone is greater than, equal to, or less than π{4.

Figure 11.3.1: Conic sections.

Theorem 11.3.1. An ellipse is the locus of points whose sum of distances to two fixed
points is constant. Similarly, a hyperbola is the locus of points whose (absolute) difference
of distances to two fixed points is constant.

Proof. This was already known to Apollonius, but the following clever proof was found
by Germinal Dandelin (1794-1847). We will describe only the case of the ellipse, as the
hyperbola case is similar.

Inscribe spheres in the cone on either side of the plane of the ellipse, one on the side of
the vertex of the cone, tangent to the plane at A, the other tangent to the plane at B. For

Figure 11.3.2: Dandelin’s proof of Theorem 11.3.1.

any point on the cone between the two spheres, the sum of the lengths of the tangents to the
two spheres is clearly a constant. On the other hand, for any point on the cone also lying in
the plane, the segments to A and B are also tangent to the respective spheres, so the sum
of their lengths equals this constant. The result follows.

The two points alluded to in the above theorem are called foci (plural of focus). The
name comes from the fact that if one has an ellipse made of a reflective material and one
places a light source at one focus, all of the light rays will be “focused” at the opposite focus
(see Problem 2).

For parabolas, one has the following alternate version of Theorem 11.3.1.

Fact 11.3.2. A parabola is the locus of points whose distance to a fixed point is equal to the
distance to a fixed line.

The fixed line and point are called the focus and directrix, respectively, of the parabola.
In modern times, it was noted that conic sections have a nice description in terms of

Cartesian coordinates. If z2 � x2 � y2 is the equation of the cone, it is evident that any
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cross-section is defined by setting some quadratic polynomial in x and y to 0. Hence a
conic section can alternatively be defined as the zero locus of a quadratic polynomial; one
must impose mild extra conditions to avoid degenerate cases, such as a pair of lines (which
geometrically arise from planes through the vertex of the cone). Unless we say otherwise,
our conic sections will be required to be nondegenerate.

Here are some standard equations for the conic sections:

Type Standard equation
Ellipse x2{a2 � y2{b2 � 1
Parabola y � ax2 � bx� c
Hyperbola x2{a2 � y2{b2 � 1

Also, the equation xy � 1 defines a rectangular hyperbola, one with perpendicular asymp-
totes. (The asymptotes of a hyperbola are its tangent lines at its intersections with the line
at infinity.)

Problems for Section 11.3

1. Prove that a line tangent to an ellipse makes equal (undirected) angles with the seg-
ments from the two foci to the point of tangency. What are the analogous properties
of a tangent to a parabola or hyperbola?

Figure 11.3.3: A line tangent to an ellipse (Problem 11.3.1).

2. Prove that two hyperbola branches which share a focus can meet in at most two points
(whereas two hyperbolas can meet in four points).

3. (Anning-Erdős) An infinite set of points in the plane has the property that the distance
between any two of the points is an integer. Prove that the points are all collinear.

4. Let P and Q be two points on an ellipse. Prove that there exist ellipses similar to the
given one, externally tangent to each other, and internally tangent to the given ellipse
at P and Q, respectively, if and only if P and Q are antipodes.

5. Use the previous problem to prove that the maximum distance between two points on
an ellipse is the length of the major axis without doing any calculations.

6. (Original) Prove that the convex quadrilateral ABCD contains a point P such that
the incircles of triangles 4PAB and 4PBC are tangent, as are those of 4PBC and
4PCD, of 4PCD and 4PDA, and of 4PDA and 4PAB, if and only if ABCD has
an inscribed circle.

7. Find all points on the conic x2 � y2 � 1 with rational coordinates x, y as follows: pick
a point px, yq with rational coordinates, and project the conic from px, yq onto a fixed
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line (e.g. the line at infinity). More generally, given a single rational point on a conic
whose defining equation has rational coefficients, this procedure allows you to describe
all such points.

11.4 Conics in the projective plane

In this section, we discuss conic sections from the point of view of projective geometry. To
start, we rephrase the geometric definition of a conic section.

Fact 11.4.1. A curve is a conic section if and only if it is the image of a circle under a
suitable projective transformation.

In particular, the theorems of Pascal and Brianchon continue to hold if the circle in the
statement of either theorem is replaced with an arbitrary conic. From these one can deduce
converse theorems, that a hexagon is inscribed in (resp. circumscribed about) a conic if and
only if it satisfies the conclusion of Pascal (resp. Brianchon); thinking of Pappus’s theorem,
one realizes that the conics in the previous statement must be permitted to be degenerate.

We also note that the classification of conics can be restated in terms of projective
geometry.

Fact 11.4.2. A conic is an ellipse (or a circle) if and only if it does not meet the line at
infinity. A conic is a parabola if and only if it is tangent to the line at infinity. A conic is a
hyperbola if and only if it intersects the line at infinity in two distinct points.

Problems for Section 11.4

1. Prove that a hexagon whose opposite sides meet in collinear points is inscribed in a
conic (which may degenerate to a pair of lines).

2. Let 4ABC and 4BCD be equilateral triangles. An arbitrary line through D meets
ÐÑ
AB at M and

ÐÑ
AC at N . Determine the acute angle between the lines

ÐÑ
BN and

ÐÝÑ
CM .

3. (Poncelet-Brianchon theorem) Let A, B, C be three points on a rectangular hyperbola
(a hyperbola with perpendicular asymptotes). Prove that the orthocenter of the trian-
gle 4ABC also lies on the hyperbola. There are other special points of 4ABC which
must lie on this hyperbola; can you find any?

4. (Monthly, Oct. 1994) Let A1, A2, A3, A4, A5, A6 be a hexagon circumscribed about a

conic, and form the intersections Pi �
ÐÝÝÝÑ
AiAi�2 X

ÐÝÝÝÝÑ
Ai�1Ai�3 (i � 1, . . . , 6, all indices

modulo 6). Show that the Pi are the vertices of a hexagon inscribed in a conic.

5. (Arbelos) Let A, B, C be three noncollinear points. Draw ellipses E1, E2, E3 with foci
B and C, C and A, A and B, respectively. Show that:
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Figure 11.5.1: The polar map with respect to a circle.

1. Each pair of ellipses meet in exactly two points, where a point of tangency counts
twice. (In general, two ellipses can meet in as many as four points.)

2. The three lines determined by these pairs of points are concurrent.

11.5 The polar map and duality

Fix a circle ω with center O. The polar map (or polar transformation) with respect to ω
interchanges points and lines in the following manner:

1. If P is a finite point other than O, the pole of P is the line p through P 1 perpendicular

to
ÐÑ
PP 1, where P 1 is the inverse of P through ω.

2. If p is a finite line not passing through O, the polar of p is the inverse through ω of
the foot of the perpendicular from O to p.

3. If P is a point at infinity, the pole of P is the line through O perpendicular to any line
through P , and vice versa.

4. If P is O, the pole of P is the line at infinity, and vice versa.

The polar map is also known as reciprocation. We keep the notational convention that points
are labeled with capital letters and their poles with the corresponding lowercase letters.

Fact 11.5.1. The polar map satisfies the following properties:

1. Every point is the polar of its pole, and every line is the pole of its polar.

2. The polar of the line through the points A and B is the intersection of the poles a and
b.

3. Three points are collinear if and only if their poles are concurrent.

An obvious consequence of the existence of the polar map is the duality principle.

Fact 11.5.2 (Duality principle). A theorem of projective geometry remains true if the roles
of points and lines are interchanged.

For example, the dual of one direction of Desargues’s theorem is the other direction.
We can now give Brianchon’s original proof of his theorem, using Pascal’s theorem and

the polar map. There’s nothing to it, really: given a hexagon circumscribed about a circle
ω, apply the polar map with respect to ω. The result is a hexagon inscribed in ω, and the
collinearity of the intersections of opposite sides translates back to the original diagram as
the concurrence of the lines through opposite vertices.

Problems for Section 11.5
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1. Make up a problem by starting with a result that you know and applying the polar
map. Beware that circles not concentric with ω do not behave well under the polar
map; see below.

2. State the dual of Pappus’s theorem. Can you prove this directly? (A projection may
help.)

3. State and prove a dual version of problem 8.3.3. Since circles do not dualize to circles,
you will have to come up with a new proof!

4. (China, 1996) Let H be the orthocenter of acute triangle 4ABC. The tangents from
A to the circle with diameter BC touch the circle at P and Q. Prove that P, Q, H are
collinear.

5. Let 4ABC be a triangle with incenter I. Fix a line ` tangent to the incircle of 4ABC
(not containing any of the sides). Let A1, B1, C 1 be points on ` such that

=AIA1 � =BIB1 � =CIC 1 � π{2.

Show that
ÐÑ
AA1,

ÐÑ
BB1,

ÐÝÑ
CC 1 are concurrent.

6. (Răzvan Gelca) Let A, B, C,D be four points on a circle. Show that the pole of
ÐÑ
AC X

ÐÑ
BD with respect to this circle passes through

ÐÑ
AB X

ÐÑ
CD and

ÐÑ
AD X

ÐÑ
BC. Use

this fact to give another solution to Problem 6.2.6 (IMO 1985/6).

7. We know what happens to points and lines under the polar map, but what about a
curve? If we view the curve as a locus, i.e. a set of points, its dual is a set of lines
which form an envelope, i.e. they are all tangent to some curve. Show that the dual of

Figure 11.5.2: The envelope of a family of lines.

a conic, under this definition, is again a conic. However, the dual of a circle need not
be a circle.

8. Let ω be a (nondegenerate) conic. Show that there exists a unique map on the projec-
tive plane, taking points to lines and vice versa, satisfying the properties in Fact 11.5.1,
and taking each point on ω to the tangent to ω through that point. This map is known
as the polar map with respect to ω (and coincides with the first definition if ω is a
circle).

9. (IMO 1998/5) Let I be the incenter of triangle 4ABC. Let the incircle of 4ABC
touch the sides BC,CA, AB at K, L, M , respectively. The line through B parallel to
ÐÝÑ
MK meets the lines

ÐÑ
LM and

ÐÑ
LK at R and S, respectively. Prove that angle =RIS is

acute.
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11.6 Cross-ratio

From the discussion so far, it may appear that there is no useful notion of distance in
projective geometry, for projective transformations do not preserve Euclidean distances, or
even ratios of distances along a line (which affine transformations do preserve). There is
something to be salvaged here, though; the “ratios of ratios of distances” are preserved.

Given four collinear points A, B, C,D, the cross-ratio of these points is defined as the
following signed ratio of lengths:

AC �BD

AD �BC
.

In case one of these points is at infinity, the definition can be extended by declaring that the
ratio of two infinite distances is 1. We have left the definition where all of the points lie at
infinity as an exercise.

In light of duality, we ought to be able to make this definition for four concurrent lines,
and in fact we can: the cross-ratio of four lines a, b, c, d is defined as the cross-ratio of
the intersections A, B, C,D of a, b, c, d with some line ` not passing through the point of
concurrency. The cross-ratio is well-defined by the following observation, which follows from
several applications of the Law of Sines.

Fact 11.6.1. Let a, b, c, d be four concurrent lines and ` a line meeting a, b, c, d at A, B, C,D,
respectively. Then

AC �BD

AD �BC
�

sin>pa, cq sin>pb, dq

sin>pb, cq sin>pa, dq
.

Fact 11.6.2. The cross-ratio is invariant under projective transformations and the polar
map.

In case the cross-ratio is �1, we say C and D are harmonic conjugates with respect to A
and B (or vice versa). If you did Problem 5.2.3, you witnessed the most interesting property

of harmonic conjugates: if P is any point not on the line and Q is any point on
ÐÑ
PC other

than P or C, then
ÐÑ
AP X

ÐÑ
BQ,

ÐÑ
AQX

ÐÑ
BP and D are collinear. (Not surprisingly, this property

is projection-invariant.)
One nice application of cross-ratios is the following characterization of conics.

Fact 11.6.3. Given four points A, B, C,D, the locus of points E such that the cross-ratio of

the lines
ÐÑ
AE,

ÐÑ
BE,

ÐÑ
CE,

ÐÑ
DE is constant is a conic.

Problems for Section 11.6

1. How should the cross-ratio be defined along the line at infinity?

2. Let A, B, C,D be four points on a circle. Show that for E on the circle, the cross-ratio

of the lines
ÐÑ
EA,

ÐÑ
EB,

ÐÑ
EC,

ÐÑ
ED remains constant. Then use this to deduce Fact 11.6.3.
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3. (“Butterfly problem”) Let M be the midpoint of chord XY of a circle, and let AB and

CD be chords passing through M . Let E �
ÐÑ
AD X

ÐÑ
XY and F �

ÐÑ
BC X

ÐÑ
XY . Prove

that EM � MF .

4. The points A, B, C,D, in this order, lie on a straight line. A circle k passes through

B and C, and the lines
ÐÝÑ
AM,

ÐÑ
AN,

ÐÑ
DK,

ÐÑ
DL are tangent to k at M, N, K, L. The lines

ÐÝÑ
MN,

ÐÑ
KL intersect

ÐÑ
BC at P, Q.

(a) Prove that P and Q do not depend on k.

(b) If AD � a, BC � b, and the segment BC moves along AD, find the minimum
length of segment PQ.

11.7 The complex projective plane

The homogeneous coordinates we have worked with so far also make sense for complex
numbers, though visualizing the result is substantially harder. The set of points they define
(i.e. the set of proportionality classes of ordered triples of complex numbers, not all zero) is
called the complex projective plane. We define lines and conics in this new plane simply as
the zero loci of linear and quadratic polynomials, respectively.

One handy feature of the complex projective plane is the following characterization of
circles.

Fact 11.7.1. A nondegenerate conic is a circle if and only if it passes through the points
r1 : i : 0s and r1 : �i : 0s.

These two points are called the circular points at infinity, or simply the circular points
for short.

The fact that complex circles always meet the line at infinity in two points, while real
circles to not, is a symptom of the key fact that the complex numbers are algebraically
closed, i.e. every polynomial with complex coefficients has a complex root. (This is the
Fundamental Theorem of Algebra, first proved by Gauss.) This means, for example, that
we have the following:

Fact 11.7.2. In the complex projective plane, two conics meet in exactly four points (counting
points of tangency twice).

In fact, a more general result is true, which we will not prove; it is attributed to Etienne
Bézout3 (1730–1783).

Theorem 11.7.3 (Bézout). The zero loci of two polynomials, of degrees m and n, contains
exactly mn points if the loci meet transversally everywhere (i.e. at each intersection, each
locus has a well-defined tangent line, and the tangent lines are distinct).

3There seems to be some disagreement over whether this name is spelled “Bezout” or “Bézout”; we use
the MacTutor spelling.
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If the loci do not meet transversally, e.g. if they are tangent somewhere, one must correctly
assign multiplicities to the intersections to make the count work.

An interesting consequence of Bezout’s theorem, which we will prove independently, is
due to Michel Chasles4 (1793–1880). The zero locus of a polynomial of degree 3 is known as
a cubic curve.

Theorem 11.7.4 (Chasles). Let C1 and C2 be two cubic curves meeting in exactly nine
distinct points. Then any cubic curve passing through eight of the points passes through the
ninth point.

Proof. The set of homogeneous degree 3 polynomials in x, y, z is a 10-dimensional vector
space (check by writing a basis of monomials); let Q1 and Q2 be polynomials with zero loci
C1 and C2, respectively, and let P1, . . . , P9 be the nine intersections of C1 and C2. Note that
no four of these points lie on a line and no seven lie on a conic, or else each of C1 and C2

would have this line or conic as a component, and their intersection would be infinite rather
than nine points.

Let di be the dimension of the space of degree 3 polynomials vanishing at D1, . . . , Di

(and put d0 � 10); then for i ¤ 8, di equals either di�1�1 or di, the latter only if every cubic
curve passing through P1, . . . , Pi�1 also passes through Pi. However, this turns out not to
be the case; see the problems. Thus d8 � 2, and we already have two linearly independent
polynomials in this space, namely Q1 and Q2. (If they were dependent, they would define
the same curve, and again the intersection would be infinite.) Thus if C is a cubic curve
defined by a polynomial Q that passes through P1, . . . , P8, then Q � aQ1 � bQ2 for some
a, b P C, and so Q also vanishes at P9, as desired.

These results are just the tip of a rather sizable iceberg. The modern subject of algebraic
geometry is concerned with the study of zero loci of sets of polynomials in spaces of any
dimension. It interacts with almost every other branch of mathematics, including complex
analysis, topology, number theory, combinatorics, and mathematical physics. Unfortunately,
the subject as practiced today has become technically involved5; the novice should start
with a book written in the “classical” style, such as Harris [10] or Shafarevich [16], before
proceeding to a “modern” text such as Eisenbud and Harris [6] or Hartshorne [11]. (If it is
not already clear from the rhapsodic tone of this section, algebraic geometry, particularly in
connection with number theory, ranks among the author’s main research interests.)

Problems for Section 11.7

1. Give another proof that there is a unique conic passing through any five points, using
the circular points.

4“Chasles” is pronounced “shell”.
5Algebraic geometry flourished in Italy in the early 20th century, but it was practiced with a flagrant lack

of rigor that led to numerous errors. To fix these, it proved necessary to recast the foundations of the topic;
this was accomplished in the 1960s under the guidance of Alexander Grothendieck (1928–??). What the new
foundations gain in power and flexibility, they lack in accessibility; the most accessible route to them seems
to be via [6].
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2. Make up a problem by taking a projective statement you know and projecting two of
the points in the diagram to the circular points. (One of my favorites is the radical
axis theorem—which becomes a projective statement if you replace the circles by conics
through two fixed points!)

3. Deduce Pascal’s theorem from Chasles’ theorem applied to a certain degenerate cubic.

4. Prove that given eight or fewer points in the plane, no four on a line and no seven on
a conic, one of which is labeled P , there exists a cubic curve passing through all of the
points but P .

5. A cubic curve which is nondegenerate, and additionally has no singular point (a point
where the partial derivatives of the defining homogeneous polynomial all vanish, like
the point r0 : 0 : 1s on the curve y2z � x3 � x2z) is called an elliptic curve.6 Let
E be an elliptic curve, and pick a point O on E. Define “addition” of points on

E as follows: given points P and Q, let R be the third intersection of the line
ÐÑ
PQ

with E, and let P � Q be the third intersection of the line
ÐÑ
OR with E. Prove that

pP � Qq � R � P � pQ � Rq for any three points P, Q, R, i.e. that “addition is
associative”. (If you know what a group is, show that E forms a group under addition,
by showing that there exist inverses and an identity element.) For more on elliptic
curves, and their role in number theory, see [18].

6. Give another solution to problem 10.2.2 using a well-chosen projective transformation
in the complex projective plane.

7. One can define addition on a curve on a singular cubic in the same fashion, as long
as none of the points involved is a singular point of the cubic. Use this fact to give
another solution to Problem 10.2.2.

8. Let E be an elliptic curve. Show that there are exactly nine points at which the
tangent line at E has a triple, not just a double, intersection with the curve (and so
meets the curve nowhere else). These points are called flexes. Also show that the line
through any two flexes meets E again at another flex. (Hence the flexes constitute a
counterexample to Problem 9.1.8 in the complex projective plane!)

9. (Poncelet’s porism) Let ω1 and ω2 be two conic sections. Given a point P0 on ω1, let

P1 be either of the points on ω1 such that the line
ÐÝÑ
P0P1 is tangent to ω2. Then for

n ¥ 2, define Pn as the point on ω1 other than Pn�2 such that
ÐÝÝÝÑ
Pn�1Pn is tangent to

ω2. Suppose there exists n such that P0 � Pn for a particular choice of P0. Show that
P0 � Pn for any choice of P0.

6The geometry of elliptic curves pervades much of modern number theory, e.g., the proof of Fermat’s
Last Theorem given in 1995 by Andrew Wiles (1953–). See [18] for a gentle introduction, or [17] for a more
comprehensive treatment.
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Part IV

Odds and ends
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Hints

Here are the author’s suggestions on how to proceed on some of the problems. If you find
another solution to a problem, so much the better—but it may not be a bad idea to try to
find the suggested solution anyway!

We have refrained from including detailed solutions to all of the problems; for the jus-
tification of this decision, and for a web location at which solutions can be found, see the
Introduction.

1.2.2 Imitate the proof of Theorem 6.5.1.

3.1.5 Consider the triangle 4AB1C1 together with the second intersection of the circumcir-
cles of 4AB1C2 and 4AB3C1. Show that this figure is congruent to the two analogous
figures formed from the other triangles. Do this by rotating 4AB1C1 onto 4C2AB2

onto 4B3C3A and tracing what happens to the figure. (Or apply Theorem 4.3.1.)

3.2.5 Consider the homothety around D taking B to C. If you knew the problem were true,
what would that say about the image of E? Once you figure that out, work backwards.
(It may help to peek ahead to Chapter 7.)

3.3.2 After applying Theorem 4.3.1, this should bear a strong resemblance to Problem 3.1.5.

3.3.3 How does P2 depend on P1?

4.1.6 The octahedron has 4 times the volume of the tetrahedron. What happens when you
glue them together at a face?

4.3.1 Prove one assertion, then work backward to prove the other.

4.3.3 Construct two of the intersections of the trisections, complete the equilateral triangle,
then show that its third vertex is the third intersection. This is difficult; if you’re still
stuck, see [5].

5.2.2 Draw 10 points: the 6 vertices of the triangles, the three intersections of corresponding
sides, and the intersection of the lines joining two pairs of corresponding vertices. If
you relabel these 10 points appropriately, this diagram will turn into a case of the
forward direction of Desargues!
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6.2.1 Draw the circumcircle of ABC, and apply the radical axis theorem to that circle, ω1,
and ω2.

6.2.6 There are several solutions to this problem, but no one of them is easy to find. In any
case, before anything else, find an extra cyclic quadrilateral.

6.3.4 Work backwards, defining G as the point for which the conclusion holds. Also consider
the circumcircle of CDE.

6.4.2 Find a cyclic hexagon.

6.4.3 Use Theorem 4.2.3.

6.6.2 Even using directed angles, the result fails for nonconvex hexagons. Figuring out why
may help you determine how to use convexity here.

6.5.1 Given segments AB and CD, what conditions must the center P of a spiral similarity
carrying AB to CD satisfy?

6.5.2 By Ceva and Menelaus, one can show BA1{A1C � BA2{A2C. This means the circle
with diameter A1A2 is a circle of Apollonius with respect to B and C.

7.2.5 The center of the circle lies at C.

7.2.6 The fixed point lies on the circumcircle of ABC.

7.2.7 Show that the point F is the excenter of ACD opposite A.

7.2.8 Use homothety.

7.2.9 The incircle of triangle O1O2O3 touches O2O3 at C. Reformulate the problem in terms
of O1O2O3 and get rid of the circles. From there, one way to proceed is to calculate
where along ` the intersection with AO1 is.

7.3.5 For (a), write the half-turn as the composition of two other homotheties and locate
the fixed point.

7.5.4 Use circles of Apollonius.

7.6.1 What is the locus of points where one of these equalities holds?

7.7.1 The frame shift here is to consider the triangle formed by the excenters.

7.8.4 The distance d satisfies 9d2 � a2 � b2 � c2.

7.9.1 Apply the Law of Cosines to the triangles ABD and ACD.

8.2.4 Use Fact 7.2.3.
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8.4.2 Show that the orthopole is the radical axis of any two of the circles.

8.3.3 Show that no two consecutive quadrilaterals can both have incircles.

9.1.4 Use the similar triangles formed by the sides and diagonals.

9.2.8 Write everything in terms of cot A{2 and the like. Then turn the result into a statement
about homogeneous polynomials using the identity

cot
A

2
� cot

B

2
� cot

C

2
� cot

A

2
cot

B

2
cot

C

2
,

and solve the result.

9.2.9 Use an affine transformation to make ABCD cyclic, and perform a quadrilateral ana-
logue of the s� a substitution.

9.4.4 A certain special case of this result is equivalent to Erdős-Mordell. Modify the proof
slightly to accommodate the generalization.

10.1.9 Which circles are orthogonal to two concentric circles?

10.3.6 Reduce to the case where two of the circles are tangent, then invert.

10.3.11 The paradigm does not hold here. Invert through the incircle, then superimpose the
original and inverted diagrams.

10.3.12 Note that AB � AB1 � AC � AC1. Also look at the intersection of OA and B1C1.

10.3.13 The busy point is O. After you invert there, the conclusion is that K 1, P 1, Q1 are
collinear, and the hypothesis on P and Q should look like a criterion for collinearity.

11.2.2 Find a projective transformation taking the circle to itself but not preserving its center.

11.4.1 Fix five of the points and compare the locus of sixth points making this condition hold
with the conic through the five points.

11.4.3 Apply Pascal’s theorem to the hyperbola, using the intersections of the asymptotes
with the line at infinity as two of the six points.

11.5.6 Draw the circle with diameter OB, and show that its common chord with the circle
centered at O is concurrent with KN and AC.

11.7.4 In fact, there exists a degenerate cubic with this property.

11.7.6 Find a projective transformation taking the circle to a circle and the line to infinity.

11.7.9 As in Steiner’s porism, reduce to the case of two concentric circles.
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Suggested further reading

The definition of “reading” here is expansive: it includes electronic resources such as software
packages (for dynamic geometry) and Web resources (for competitions).

Algebraic geometry

As noted in Section 11.7, one should start with a text written in “traditional” language, such
as those by Harris [10], Shafarevich [16], or Cox, Little and O’Shea [3].

Competitions

The Art of Problem Solving web site,

http://www.artofproblemsolving.com/

is the premier web resource for students interested in problem solving of the sort appearing
in competitions like the USAMO and IMO.

Dynamic geometry

The phrase “dynamic geometry” refers to computer software that can render a geometric
configuration in a fashion that allows the user to vary the determining data and witness
the change in the resulting configuration in real time. (For example, if it appears that
three lines are concurrent, one can test this hypothesis by “jiggling the input data” to see
whether the concurrence appears to be coincidental or causal.) There are several outstanding
programs for doing this: commercial offerings include Cabri, Cinderella, and The Geometer’s
Sketchpad, while slimmer noncommercial alternatives include Kgeo and Kseg.

Geometric inequalities

The compilation [2] is the definitive source, while its sequel [15] details more recent results.
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Hyperbolic geometry

The book [19] is a charming introduction to the topic, spinning a tale of Lewis Carroll, his
friend and muse Alice Liddell, and a mysterious stranger as they explore unfamiliar geometric
territory.

Miscellaneous

The book [1] is a nice survey of “modern” geometry in various forms: it includes sections on
hyperbolic geometry, spherical geometry, projective geometry, and constructibility.
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About the license

This book is being distributed in an “open source” fashion, much in the manner that open
source software like the Linux operation system is distributed. This confers certain rights
on you, the reader, but also carries certain restrictions that limit your ability to restrict the
rights of others. This chapter includes a little information about how the open source model
operates both in general and in this particular instance; more specifics can be found in the
text of the GNU Free Documentation License (GFDL), , which appears in the following
chapter.

Open source for text?

This book has been released under the GNU Free Documentation License (GFDL) in order to
promote the free and open dissemination of the ideas contained herein, and as an experiment
in collaborative authorship. The GFDL expressly permits unlimited distribution of this
document either intact or in modified forms, through either commercial or noncommercial
means. The main restrictions it imposes are that:

• the human-editable source file(s) for any modified form of this document must be made
freely available;

• all modified forms must themselves carry the GFDL.

Note that the second item means that no material may be incorporated into a modified
form of this book which carries a copyright restriction less permissive than the GFDL (i.e.,
most material carrying an outstanding non-GFDL copyright), unless the use of that material
constitutes a fair use in the sense of US copyright law. On the other hand, other GFDL
material, material on which the copyright has expired, and material in the public domain
are fair game.

Source code distribution

Like a computer program, a piece of electronic text is usually used in a “processed” form,
such as what you are (probably) reading now, but is created in a “source” form which is
easier for the author to manipulate. In the case of this book, the source code is input for
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Knuth’s TeX typesetting system, or more precisely for the variant known as AMSLaTeX.
One requirement of the GFDL is that any processed document must either include, or direct
the reader to an electronic location of, all source files. In this case, these source files will be
distributed at the following URL:

http://math.mit.edu/~kedlaya/geometryunbound.

This site will also include some material not included in the present document, such as
diagrams and solutions.

History

A GFDL document is required to carry a section documenting its modification history. In
the case of the present document, there is no such history; this is the original version. If you
prepare a modification of this document, make sure to update this section!
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
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accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning of
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the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Pre-
serve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
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or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated lo-
cation until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
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I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the same

121



entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. Combining Documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. Collections of Documents

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, is called an “ag-
gregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.
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Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Doc-
umentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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A boldfaced reference denotes either the definition of a term or the formal statement of a
result.

acute
angle, 11
triangle, 8

addition
on an elliptic curve, 104

addition formulae (for trigonometric functions),
16

Aeschylus, viii
affine transformation, 29

characterization of, 31
Agamemnon, 43
al-Haytham, Ibu Ali al-Hasan ibn, 93
algebraically closed (field), 102
Alhazen, 93
Alvisio, Marcelo, ix
Andreescu, Titu, ix, 72
angle, 11

acute, 11
between two inversive circles, 83
directed, 35
obtuse, 11
right, 11

angle bisector
external, 11
internal, 11
theorem, 57

angle chasing, 34
angle measure, 11
angular defect, 91
Apollonian

circle packing, 54
gasket, 54

Apollonius
circle of, 53
of Perga, 53, 81, 96

arc, 10
area

directed (of a polygon), 8
of a circle, 9
of a polygon, 9
signed (of a polygon), 8

area formula
for a triangle, 16, 17

arithmetic
of directed angles, 12

asymptote
of a hyperbola, 97

B.C.E., x
Bézout’s theorem, 102
Bézout, Etienne, 102
Baragar, Arthur, ix
Barton, Reid, ix
barycentric coordinates, 21
betweenness (of points on a line), 4
Bhaskara (Bhaskaracharya), 33
Bolyai, János, 88
Bonaparte, Napoleon, 20
boundary

of a disc, 6
Brahmagupta, 68
Brahmagupta’s formula, 34, 68
Brianchon’s theorem, 51, 99
Brianchon, Charles, 51
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Brocard
angle (of a triangle), 62, 76
points (of a triangle), 61

Brunelleschi, Filippo, 93
busy point, 86

Carroll, Lewis (Charles Lutwidge Dodgson),
4

Cartesian coordinates, 3
center

of a circle/disc, 6
of an arc, 10
radical (of three circles), 49

center of mass (of a triangle), 55
centroid (of a triangle), 55
Ceva

theorem, 41
Ceva’s theorem

trigonometric form, 42
Ceva, Giovanni, 41, 43
cevian (of a triangle), 41, 55
characterization

of affine transformations, 31
chasing (of angles), see angle chasing
Chasles’s theorem, 103
Chasles, Michel, 103
chord (of a circle), 6
circle, 6

coaxial (coaxal), 49
inversive, 82
of Apollonius, 53

circular point at infinity, 102
circumcenter (of a cyclic polygon), 10, 58
circumcircle (of a cyclic polygon), 10, 58
circumference (of an arc/circle), 10
circumradius (of a cyclic polygon), 10
circumscribed circle, see circumcircle
circumscription (of a polygon by an arc/circle,

10
classification

of rigid motions, 24
of spiral similarities, 28

closed

disc, 6
closed polygon, 7
coaxial (coaxal) circles, 49
collinearity (of points), 4
complete quadrilateral, 70
complex numbers, 19
complex projective plane, 102
concentricity (of circles), 6
concurrence

criterion, 27
of lines, 4

concyclic (points), 10
congruence (of two figures, 23
conic (section), 96
convex

polygon, 8
corollary, viii
cosecant, 15
cosine, 15
cotangent, 15
Coxeter, Harold Scott MacDonald, viii
cross product, 18
cross-ratio

of four collinear points, 101
of four lines, 101

cubic curve, 103
cyclic (polygon), 10

Dandelin, Germinal, 96
degree (angle measure), 11
Desargues

Girard, 93
theorem, 45, 95

Desargues’s theorem, 44
Desargues, Girard, 44
Descartes, René, 3
diameter

of a circle/disc, 6
dilatation, 27
dilation, 27
direct congruence (of two figures), 24
direct similarity (of two figures), 26
directed angle, 35
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between two lines, 12
formed by three points, 12
measure, 12

directed area (of a polygon), 8
directrix

of a parabola, 96
disc, 6

closed, 6
model (of hyperbolic geometry), 88
open, 6

dissection, 33
distance

between two points, 5
from a point to a line, 6
hyperbolic, 90

Dodgson, Charles Lutwidge (Lewis Carroll),
4

dot product, 18
double-angle formulae (for trigonometric func-

tions), 16
duality principle, 99

Einstein, Albert, 87
Elements (of Euclid), 3, 11, 47
ellipse, 96
elliptic curve, 104
envelope, 100
Erdős, Pál (Paul), 76, 97
Erdős-Mordell inequality, 71
escribed circle, see excircle
Euclid of Alexandria, 3, 11
Euclid’s Elements, 3, 11, 47
Euler line (of a triangle), 59, 60
Euler’s inequality, 74
Euler, Leonhard, 20
excenter (of a triangle), 56
excircle (of a triangle), 56
exercise, ix
exscribed circle, see excircle
Extended Law of Sines, 16
extension (of a segment), 4
external angle bisector, 11
external tangency (of circles), 6

fact, ix
Fagnano’s problem, 71
fair use, 115
Fermat’s Last Theorem, 104
Fermat, Pierre de, 3
figure, 23
flex (of an elliptic curve), 104
focus (of a conic section), 96
foot of a perpendicular, 5
formula

Brahmagupta’s, 68
Stewart’s, 64

formula, shoelace, 8
formula, surveyor’s, 8
Fundamental Theorem of Algebra, 102
fundamental theorem of algebra, 20

Garfield, James A., 33
Gauss (Gauß), (Johann) Carl Friedrich, 20,

88
Gelca, Răzvan, ix, 57, 72, 100
geometry

plane, 5
solid, 5
space, 5

Gergonne point (of a triangle), 60
glide reflection, 24
Global Positioning System, 6
GNU Free Documentation License, vii, 115,

117
Greitzer, Samuel, viii
Grothendieck, Alexander, 103
group (of rigid motions), 25

half-angle formulae (for trigonometric func-
tions), 17

half-turn, 23, 27
halfplane

model (of hyperbolic geometry), 88
harmonic conjugates, 45, 101
Heron’s formula, 64, 68
hexagon, 8
Hilbert, David, 3
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Homer, 43
homogeneous coordinates, 94
homothety, 27, 28, 50
Hudson, Anne, ix
hyperbola, 96

rectangular, 97
hyperbolic

plane, 89
transformation, 89

Iliad, 43
IMO (International Mathematical Olympiad),

vii
incenter (of a triangle), 56
incircle (of a triangle), 56
inequality

Erdős-Mordell, 71
Jensen’s, 75
Ptolemy’s, 71

inradius (of a triangle, 56
inscribed (polygon in an arc/circle), 10
inscribed circle, see incircle
interior

of a circle/disc, 6
of a convex polygon, 8
of an angle, 11

internal angle bisector, 11
internal tangency (of circles), 6
inversion, 81
inversive

circle, 82
plane, 82

isogonal conjugates, 61

Jensen’s inequality, 75

Klamkin, Murray, 74

Law of Cosines, 16
Law of Sines, 16
least upper bound property (of real numbers),

3
Lehrer, Tom, 88
Leibniz, Gottfried Wilhelm von, 50

Lemoine point (of a triangle), 61
length (of a segment), 5
line, 4

segment, 4
line at infinity, 94
Lobachevsky, Nikolai Ivanovich, 88
locus, 100

MacTutor History of Mathematics, x
mass points, 21, 55
Mathpro Press, 58
measure (of an arc/circle), 10
medial triangle (of a triangle), 59
median (of a triangle), 55
Menelaus, 43
Menelaus’s theorem, 43, 52
midpoint

of a segment, 5
of an arc, 10

Miquel
point (of a complete quadrilateral), 70
theorem, 34

Moore method, viii
MOP (Math Olympiad Program), vii
Moraseski, Dan, 61
Mordell, Louis, 76
Morley’s theorem, 38
MOSP (Math Olympiad Summer Program),

vii

Nagel point (of a triangle), 60
Napoleon Bonaparte, 20
Napoleon triangles (of a triangle), 20
Nikolov, Nikolai, 77
nine-point circle (of a triangle), 59
non-self-intersecting polygon, 8
nondegenerate polygon, 8

oblique coordinates, 31
obtuse

angle, 11
open

disc, 6
opposite
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congruence (of two figures), 24
similarity (of two figures), 26

order (of points on a line), 4
orientation (of a convex polygon), 9
orthic triangle (of a triangle), 59
orthogonality

of inversive circles, 83
ortholine (of a complete quadrilateral), 70
orthopole, 46

Pappus
of Alexandria, 45, 84
theorem, 45

Pappus’s theorem, 100
parabola, 96
parallel postulate, 88
parallelness (of lines), 4
parallelogram, 8
Pascal’s theorem, 35, 41, 50, 51, 99
Pascal, Blaise, 50
Patruno, Gregg, ix
pentagon, 8
perimeter (of a polygon), 7
perpendicular bisector (of a segment), 5
perpendicularity (of lines), 4
perspective triangles

from a line, 44
from a point, 44

Pixton, Aaron, 46
plane, 4

hyperbolic, 89
inversive, 82

plane geometry, 5
plane, projective, 93
Poincaré, Jules Henri, 88
point, 4

busy, 86
point at infinity, 82, 93

circular, 102
polar

of a line, 99
polar map, 99

with respect to a conic, 100

pole (of a point), 99
polygon, 7

convex, 8
non-self-intersecting, 8
nondegenerate, 8
simple, 8

polygon, closed, 7
Poncelet’s porism, 104
Poncelet-Brianchon theorem, 98
Poonen, Bjorn, x
porism

Poncelet’s, 104
Steiner’s, 85

power of a point, 7, 47
converse, 47
theorem, 47

problem, ix
Fagnano’s, 71

projection
stereographic, 82

projective plane, 93
complex, 102

projective transformation, 94
pseudoproof, 11
pseudotheorem, 11
Ptolemy’s inequality, 19, 71
Ptolemy, Claudius, 67
Pythagorean theorem, 33

quadrilateral, 8
complete, 70

Rabinowitz, Stanley, 58
radian (angle measure), 11
radical axis, 48

converse, 49
theorem, 48

radical axis theorem, 41
radical center (of three circles), 49
radius

of an arc, 10
radius (of a circle/disc), 6
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ratio of lengths, signed (of collinear segments),
5, 27, 41, 44, 47, 101

ratio of similitude, 26
ray, 4
reciprocation, 99
rectangle, 8
rectangular hyperbola, 97
reflection, 23, 71
relativity, 87
right

angle, 11
rigid motion, 23, 26

classification of, 24
Ross, Arnold, viii
rotation, 23, 28, 36

SAT (formerly Scholastic Aptitude Test), 34
secant, 15
second intersection (of a line and circle), 6
segment, 4
semicircle, 10
semiperimeter (of a polygon), 7, 16, 56
Shelley, Percy Bysshe, viii
shoelace formula, 8
side (of a polygon), 7
signed area (of a polygon), 8
signed measure (of an arc/circle), 10
signed ratio of lengths (of collinear segments),

5, 27, 41, 44, 47, 101
similarity, 26
similarity (of two figures, 26
simple polygon, 8
Simson

Robert, 52
Simson line, 52
Simson’s theorem, 52
sine, 15
Socratic method, viii
solid geometry, 5
space geometry, 5
spiral similarity, 28
square, 8
Steiner’s porism, 85

Steiner, Jakob, 81, 84
Steiner-Lehmus theorem, 64
stereographic projection, 82
Stewart’s formula, 64
sum-to-product formulae (for trigonometric

functions), 16
surveyor’s formula, 8
symmedian (of a triangle), 61

tangent (trigonometric function), 15
tangent line (of a circle), 6
terminology, viii
theorem, viii

angle bisector, 57
Brianchon’s, 51
Ceva’s, 41
Desargues’s, 44, 45, 95
Menelaus’s, 43, 52
Miquel’s, 34
Morley’s, 38
Pappus, 45
Pascal’s, 35, 41, 50, 51
Pythagorean, 33
radical axis, 41
Simson’s, 52

transformation
affine, 29
hyperbolic, 89
polar, 99
projective, 94

translation, 23
trapezoid, 8
triangle, 8

acute, 8
triangle inequality, 5, 71
trig Ceva, 42

Ullman, Dan, ix

Vakil, Ravi, x
van Yzeren, Jan, 50
Varignon parallelogram, 67
vector, 18
vertex
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of a polygon, 7
vos Savant, Marilyn, 88

Wallace, William, 52
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