Math 203B (Algebraic Geometry), UCSD, winter 2013 Solutions for problem set 1

1. Identify \mathbb{R}^{4} with the space of quaternions $\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}$. Then the function $(a+b i+c j+d k) \mapsto i(a+b i+c j+d k)=-b+a i-d+c j$ defines an everywhere nonzero section of the tangent bundle.
2. (a) Let $\left\{U_{i}\right\}_{i \in I}$ be an open cover of an open subset U of X. The map $\mathcal{F}(U) \rightarrow$ $\prod_{i \in I} \mathcal{F}\left(U_{i}\right)$ is injective because a function $g: U \rightarrow Y$ is determined by its restrictions to any set-theoretic cover. To check the rest of the sheaf property, choose $g_{i} \in \mathcal{F}\left(U_{i}\right)$ such that $\left.g_{i}\right|_{U_{i} \cap U_{j}}=\left.g_{j}\right|_{U_{i} \cap U_{j}}$. Define the function $g: U \rightarrow Y$ by setting $g(x)=g_{i}(x)$ for any index $i \in I$ for which $x \in U_{i}$; this is well-defined because all choices of i give the same answer. Then $(f \circ g)(x)=\left(f \circ g_{i}\right)(x)=x$, so $f \circ g$ equals the inclusion $U \rightarrow X$. For any open subset W of $Y, g^{-1}(W)=\cup_{i \in I} g_{i}^{-1}(W)$ is open in U, so g is continuous. Hence $g \in \mathcal{F}(U)$, so \mathcal{F} is a sheaf.
(b) We define a basis of open sets as follows. For each open subset U of X and each $g \in \mathcal{G}(U)$, include the set $V_{g, U}=\left\{g_{x}: x \in U\right\}$. To check that this is a basis, we must check that $V_{g, U} \cap V_{g^{\prime}, U^{\prime}}$ can be written as a union of open sets, or equivalently, for any point $y \in V_{g, U} \cap V_{g^{\prime}, U^{\prime}}$ we can find a basic open subset of $V_{g, U} \cap V_{g^{\prime}, U^{\prime}}$ containing y. Namely, put $x=f(y)$. The fact that $y \in V_{g, U} \cap V_{g^{\prime}, U^{\prime}}$ means that $g_{x}=g_{x}^{\prime}$, so on some open subset $U^{\prime \prime}$ of $U^{\prime} \cap U^{\prime \prime}$ we have $\left.g\right|_{U^{\prime \prime}}=\left.g^{\prime}\right|_{U^{\prime \prime}}$. Let $g^{\prime \prime} \in \mathcal{G}\left(U^{\prime \prime}\right)$ be the restriction of g to $U^{\prime \prime}$; then $y \in V_{g^{\prime \prime}, U^{\prime \prime}} \subseteq V_{g, U} \cap V_{g^{\prime}, U^{\prime}}$. This completes the proof that the $V_{g, U}$ form a basis.
To check that $\mathcal{F}=\mathcal{G}$, we first check that for every open set $U \subseteq X$ and every $g \in \mathcal{G}(U)$, the corresponding function $\tilde{g}: U \rightarrow Y$ is continuous. It is enough to check that for every open set $V_{g^{\prime}, U^{\prime}}$, the set $\tilde{g}^{-1}\left(V_{g^{\prime}, U^{\prime}}\right)$ is open. For each $x \in \tilde{g}^{-1}\left(V_{g^{\prime}, U^{\prime}}\right)$, we have $g_{x}=g_{x}^{\prime}$, so there exists an open subset $U^{\prime \prime}$ of $U \cap U^{\prime}$ such that $\left.g\right|_{U^{\prime \prime}}=\left.g^{\prime}\right|_{U^{\prime \prime}}$. Then $x \in U^{\prime \prime} \subseteq \tilde{g}^{-1}\left(V_{g^{\prime}, U^{\prime}}\right)$, so $\tilde{g}^{-1}\left(V_{g^{\prime}, U^{\prime}}\right)$ contains an open neighborhood of each of its points; therefore it is open.
We next check that any continuous function $h: U \rightarrow Y$ corresponds to a section of \mathcal{G}. Since \mathcal{G} is a sheaf, it is enough to check this locally around a point $x \in U$. By the definition of \mathcal{G}_{x}, we can find an open subset U^{\prime} of U and a section $g \in \mathcal{F}\left(U^{\prime}\right)$ such that $g_{x}=h(x)$. Since h is continuous, $h^{-1}\left(V_{g^{\prime}, U^{\prime}}\right)$ is open; since it contains x, it also contains an open subset $U^{\prime \prime}$ of X containing x. But then the restriction of h to $U^{\prime \prime}$ corresponds to the section $\left.g\right|_{U^{\prime \prime}} \in \mathcal{F}\left(U^{\prime \prime}\right)$, as claimed.
(c) For U an open subset of X, we must check that $f^{-1}(U)$ is open. To see this, pick any $y \in f^{-1}(U)$ and put $x=f(y)$; then $y \in \mathcal{G}_{x}$. We can thus find an open subset U^{\prime} of U and a section $g \in \mathcal{G}\left(U^{\prime}\right)$ such that $g_{x}=y$; then $V_{g, U} \subseteq f^{-1}(U)$. Therefore, $f^{-1}(U)$ contains an open neighborhood of each of its points, and so is open.
Side remark: with this topology on Y, the map f is a covering space map in the sense of point-set topology.
3. Let $\mathbf{P r e}_{X}$ and $\mathbf{S h e}_{X}$ denote the categories of presheaves on X and sheaves on X, respectively. The adjoint property means the property: for $\mathcal{F} \in \mathbf{P r e}_{X}$ and $\mathcal{G} \in \mathbf{S h e}_{X}$, there is a bijection

$$
\operatorname{Mor}_{\operatorname{Pre}_{X}}(\mathcal{F}, \mathcal{G}) \rightarrow \operatorname{Mor}_{\text {She }_{X}}(\tilde{\mathcal{F}}, \mathcal{G})
$$

which is functorial in both \mathcal{F} and \mathcal{G}.
Let $f: \mathcal{F} \rightarrow \mathcal{G}$ be a map of presheaves. This then defines a map $f_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ on stalks for each $x \in X$. To see that this defines a map of sheaves, we must check that for any open subset U of X and any $s \in \tilde{\mathcal{F}}(U)$, the elements $f_{x}\left(s_{x}\right) \in \mathcal{G}_{x}$ come from a section of \mathcal{G}. Since \mathcal{G} is already a sheaf, it is enough to check this locally around an arbitrary point $x \in U$. But by the definition of $\tilde{\mathcal{F}}$, there must exist some open subset U^{\prime} of U containing x such that the stalks of s within U^{\prime} all come from a single section s^{\prime} of \mathcal{F}. Then $f(s) \in \mathcal{G}\left(U^{\prime}\right)$ has the desired property that $f(s)_{y}=f_{y}\left(s_{y}\right)$ for all $y \in U^{\prime}$. Going the other way, let $\tilde{f}: \tilde{\mathcal{F}} \rightarrow \mathcal{G}$ be a morphism of sheaves. Recall that by construction, there is a morphism $\mathcal{F} \rightarrow \tilde{\mathcal{F}}$ of presheaves which is an isomorphism on stalks. By composing with \tilde{f}, we get a morphism $f: \mathcal{F} \rightarrow \mathcal{G}$ of sheaves.

We still have to check that composing these two maps either way is the identity on either side. The point here is that because \mathcal{G} is a sheaf, objects on either side are determined by their actions on stalks, which are "the same" if we identify stalks of \mathcal{F} and $\tilde{\mathcal{F}}$ in the usual way.
4. We divide the points of $\operatorname{Spec} \mathbb{Z}$ into four subsets.

- The generic point $\operatorname{Spec} \mathbb{Q}$ has a unique point $\operatorname{Spec} \mathbb{Q}(i)$ in its fiber.
- The point (2) has a unique point $(1+i)$ in its fiber.
- The points (p) for p a prime congruent to 3 modulo 4 each have a unique point (p) in their fibers.
- The points (p) for p a prime congruent to 1 modulo 4 each have two points in their fibres: by Fermat's theorem one can write $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$, and then the ideals $(a+b i)$ and $(a-b i)$ are distinct prime ideals in $\operatorname{Spec} \mathbb{Z}[i]$.

5. These come in two types: ideals of the form $(x-a)$ with $a \in \mathbb{R}$, and ideals of the form $\left(x^{2}+a x+b\right)$ with $a, b \in \mathbb{R}$ and $x^{2}+a x+b$ irreducible. The ideals of the second type correspond to pairs of complex conjugates in \mathbb{C}.
6. (a) The sheaf $\mathcal{O}(1)$ is generated by its global sections, which are the homogeneous polynomials of degree 1. These pull back to homogeneous polynomials of degree d, which are sections of $\mathcal{O}(d)$.
(b) The sheaf $\mathcal{O}(1)$ is generated by its global sections, which are the homogeneous polynomials of degree 1. These pull back to homogeneous polynomials of bidegree $(1,1)$, which are sections of the external product $\mathcal{O}(1) \boxtimes \mathcal{O}(1)$.
7. This can be done purely in the language of commutative algebra, but we indicate the following proof in order to illustrate ideas from the lectures so far. Suppose first that $X=\operatorname{Spec}(R)$ can be written as the disjoint union of two nonempty open subsets U_{1}, U_{2}. Then there is a section $e_{1} \in \mathcal{O}_{X}(X)$ which restricts to 1 on U_{1} and 0 on U_{2}, and a section $e_{2} \in \mathcal{O}_{X}(X)$ which restricts to 1 on U_{2} and 0 on U_{1}. We proved in class that the natural map $R \rightarrow \mathcal{O}_{X}(X)$ is an isomorphism. To check that e_{1}, e_{2} satisfy $e_{1}+e_{2}=1$, $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}$, it is enough to check this at the level of sections, which we may do on U_{1} and U_{2} separately.
Suppose next that e_{1}, e_{2} are nonzero idempotents which add up to 1 . Then $V\left(e_{1}\right), V\left(e_{2}\right)$ are closed subsets of X; they are disjoint because e_{1} and e_{2} generate the unit ideal, and they cover X because $e_{1} e_{2}=e_{1}\left(1-e_{1}\right)=e_{1}-e_{1}^{2}=0$. Finally, $V\left(e_{1}\right)$ is nonempty: otherwise, e_{1} would have to generate the unit ideal, so we could find $f \in R$ with $e_{1} f=1$; but then $e_{1}=e_{1}^{2} f=e_{1} f=1$ and so $e_{2}=1-e_{1}=0$, a contradiction. Similarly, $V\left(e_{2}\right)$ is nonempty, so they form a partition of X into two nonempty closed sets.
