
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 2

1. (a) We may view Xi ∩Xj as the open subscheme of Xi consisting of those points x
for which fj does not belong to the maximal ideal of the local ring OX,x = OXi,x.
But if we identify a point x of Xi = Spec(Ai) with a prime ideal p of Ai, then fj
is in the maximal ideal of OX,x if and only if fj ∈ p, so Xi∩Xj coincides with the
distinguished open affine subscheme of SpecAi defined by fj. The latter is none
other than SpecAi[f

−1
j ].

(b) Because OX is a sheaf, we have an exact sequence

0→ OX(X)→
n⊕

i=1

OX(Xi)→
n⊕

i,j=1

OX(Xi ∩Xj).

By replacing labels, we get

0→ A→
n⊕

i=1

Ai →
n⊕

i,j=1

Aij.

Since Afk is flat over A, we get another exact sequence

0→ Afk →
n⊕

i=1

(Ai)fk →
n⊕

i,j=1

(Aij)fk

which we can rewrite using (a) as

0→ Afk →
n⊕

i=1

OX(Xi ∩Xk)→
n⊕

i,j=1

OX(Xi ∩Xj ∩Xk).

But from this it is clear that Afk = OX(Xk) = Ak.

(c) Using (b), we get a ring map A → Afi
∼= Ai and hence a morphism Xi

∼=
Spec(Afi) → Spec(A) of schemes. These maps agree on overlaps, so they define
a morphism X → Spec(A) of schemes. To see that this is an isomorphism, it
suffices to check locally on A. But f1, . . . , fn generate the unit ideal in A, so
the distinguished opens D(fi) form a cover, and the restriction to D(fi) is the
isomorphism Xi

∼= Spec(Ai).

2. We prove the result more generally allowing C1, C2 to be reducible as long as they have
no common component. Let V be the space of homogeneous cubic polynomials in three
variables over our given field; it is of dimension 10. Let Q1, Q2 be polynomials cutting
out C1, C2; since C1, C2 are distinct, Q1 and Q2 are not scalar multiples of each other.
For i = 0, . . . , 9, let Vi be the subspace of polynomials which vanish at P1, . . . , P8. It is
clear that dim(Vi) ≥ dim(Vi−1)− 1 for i = 1, . . . , 9. We will prove that equality holds
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for i = 1, . . . , 8; this will then imply that dim(V8) = dim(V9) = 2, from which the claim
will follow.

To prove the desired equality, it is enough to check that Vi 6= Vi−1 for i = 1, . . . , 8.
That is, we must produce elements of Vi − Vi−1 for i = 1, . . . , 8, or in other words,
cubic curves (possibly reducible) passing through P1, . . . , Pi−1 but not Pi. We do this
as follows.

i = 1 Any three lines not passing through P1.

i = 2 Any three lines passing through P1 but not P2.

i = 3 Any line not passing through P3 plus any conic passing through P1, P2 but not
P3.

i = 4 Any line not passing through P4 plus any conic passing through P1, P2, P3 but not
P4.

i = 5 Any line not passing through P5 plus any conic passing through P1, P2, P3, P4 but
not P5.

i = 6 Any line passing through P1 but not P6 plus any conic passing through P2, P3, P4, P5

but not P6.

i = 7 Note that no four of our points can be collinear by Bézout’s theorem. We can
thus find Pj such that the line through P1 and Pj fails to pass through P7. Then
add a conic through the other four of P1, . . . , P6 not passing through P7.

i = 8 Again by Bézout, no more than six of our points can lie on a conic. If both the
conic through P1, . . . , P5 and the line through P6, P7 fail to pass through P8, take
the union of these. If this fails because the conic passes through P8, then there
must exist an index j ∈ {1, . . . , 5} such that the line through P7 and P8 fails to
pass through Pj (in fact only one index can fail); take the line through Pj, P7 and
the conic through the other five points. If instead the line through P6, P7 passes
through P8, then there must exist an index j ∈ {6, 7} such that the conic through
P1, . . . , P4, P8 fails to pass through Pj (again because only one index can fail);
take the conic through P1, . . . , P4, Pj and the line through the other two points.

3. Pick any point O of C at which the tangent line is triply tangent (it turns out there are
exactly 9 such points but we don’t need to know this). We first define the inverse map:
−P is the third intersection of C with the line OP . We then declare the sum P +Q to
be the inverse of the third intersection of C with the line PQ; this operation is clearly
symmetric and has identity O. To check associativity, let P,Q,R be any three points.
Then the following sets of points are collinear:

P,Q,−P−Q;−P−Q,O, P+Q;P+Q,R,−(P+Q)−R;Q,R,−Q−R;−Q−R,O,Q+R;Q+R,P,−P−(Q+R).

The first three lines form one reducible cubic, while the second three form another
one. Since these share eight intersection points, they must also share the ninth, so
−(P + Q)−R = −P − (Q + R). This proves the desired associativity.
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4. We first construct the sequence in question with L = OX . Recall that by definition,
OX(−P ) is the sheaf whose sections over an open subset U are the rational functions
with no poles in U and, in case P ∈ U , at least a single zero at P . This is obviously
a subsheaf of OX , and the restrictions of OX and OX(−P ) to X − {P} coincide.
So the quotient OX/OX(−P ) is supported at P ; on any open affine subscheme U
of X containing P , it is the quasicoherent sheaf corresponding to the module over
OX(U) given by quotienting by the prime ideal corresponding to P . This is the desired
sequence.

To get the sequence in general, note that L is locally free, so tensoring with it is an
exact operation. Then note that L can be trivialized on some neighborhood of P , so
L ⊗O kP ∼= kP .

5. It suffices to check the claim when Y is affine; in this case, X is itself quasicompact.
(Namely, Y is covered by opens whose inverse images are quasicompact, but only
finitely many are needed because Y is also quasicompact.) Pick open affine subsets
U1, . . . , Un which cover X. Because f is quasiseparated, for any i, j, the space X×X×Y X

Ui×Y Uj is quasicompact, but this space is none other than Ui∩Uj. We can thus choose
finitely many open affine subsets Vijk of X that cover Ui∩Uj. Let F be a quasicoherent
sheaf on X; its pushforward is then the sheaf associated to the module which is the
kernel of the map

n⊕
i=1

F(Ui)→
n⊕

i,j=1

⊕
k

F(Vijk).

6. The last map in the sequence

0→M →
n⊕

i=1

Mfi →
n⊕

i,j=1

Mfifj

was defined to take (si)
n
i=1 to (si − sj)

n
i,j=1 (where the restriction maps have been left

implicit). The last map in the extended sequence

0→M →
n⊕

i=1

Mfi →
n⊕

i,j=1

Mfifj →
n⊕

i,j,k=1

Mfifjfk → · · ·

can be taken to send (sij)
n
i,j=1 to (sij − sik + sjk)ni,j,k=1.

7. The only thing that needs to be checked is surjectivity of G(X) → H(X). Choose
s ∈ H(X). For some open affine cover {Ui}i∈I of X, we can lift s|Ui

to some section
ti ∈ G(Ui). By assumption, there exists an open immersion j : Y → X such that Y
can be written as an affine scheme Spec(R) and F is the pushforward of M̃ for some
R-module M . By making the Ui small enough, we may ensure that each intersection
Ui ∩ Y is a distinguished open subset D(fi) of Spec(R).
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For each pair i, j, the difference ti − tj is a section in G(Ui ∩ Uj) which maps to zero
in H(Ui ∩ Uj), so we can view it as a section in F(Ui ∩ Uj) and hence as an element
mij ∈Mfifj . Note that for all i, j, k, we have mij+mjk = mik because the corresponding
equality in G(Ui ∩ Uj ∩ Uk) is the triviality (ti − tj) + (tj − tk) = (ti − tk).

By the exact sequence in the previous exercise, we can find elements mi ∈ Mfi such
that mi−mj = mij. Now ti−mi is another section of G(Ui) lifting s, but the differences
(ti −mi) − (tj −mj) vanish in G(Ui ∩ Uj). So these patch together to give a section
t ∈ G(X) lifting s.
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