Math 203B (Algebraic Geometry), UCSD, winter 2013 Solutions for problem set 2

- 1. (a) We may view $X_i \cap X_j$ as the open subscheme of X_i consisting of those points x for which f_j does not belong to the maximal ideal of the local ring $\mathcal{O}_{X,x} = \mathcal{O}_{X_i,x}$. But if we identify a point x of $X_i = \operatorname{Spec}(A_i)$ with a prime ideal \mathfrak{p} of A_i , then f_j is in the maximal ideal of $\mathcal{O}_{X,x}$ if and only if $f_j \in \mathfrak{p}$, so $X_i \cap X_j$ coincides with the distinguished open affine subscheme of $\operatorname{Spec} A_i$ defined by f_j . The latter is none other than $\operatorname{Spec} A_i[f_j^{-1}]$.
 - (b) Because \mathcal{O}_X is a sheaf, we have an exact sequence

$$0 \to \mathcal{O}_X(X) \to \bigoplus_{i=1}^n \mathcal{O}_X(X_i) \to \bigoplus_{i,j=1}^n \mathcal{O}_X(X_i \cap X_j).$$

By replacing labels, we get

$$0 \to A \to \bigoplus_{i=1}^n A_i \to \bigoplus_{i,j=1}^n A_{ij}$$

Since A_{f_k} is flat over A, we get another exact sequence

$$0 \to A_{f_k} \to \bigoplus_{i=1}^n (A_i)_{f_k} \to \bigoplus_{i,j=1}^n (A_{ij})_{f_k}$$

which we can rewrite using (a) as

$$0 \to A_{f_k} \to \bigoplus_{i=1}^n \mathcal{O}_X(X_i \cap X_k) \to \bigoplus_{i,j=1}^n \mathcal{O}_X(X_i \cap X_j \cap X_k).$$

But from this it is clear that $A_{f_k} = \mathcal{O}_X(X_k) = A_k$.

- (c) Using (b), we get a ring map $A \to A_{f_i} \cong A_i$ and hence a morphism $X_i \cong$ Spec $(A_{f_i}) \to$ Spec(A) of schemes. These maps agree on overlaps, so they define a morphism $X \to$ Spec(A) of schemes. To see that this is an isomorphism, it suffices to check locally on A. But f_1, \ldots, f_n generate the unit ideal in A, so the distinguished opens $D(f_i)$ form a cover, and the restriction to $D(f_i)$ is the isomorphism $X_i \cong$ Spec (A_i) .
- 2. We prove the result more generally allowing C_1, C_2 to be reducible as long as they have no common component. Let V be the space of homogeneous cubic polynomials in three variables over our given field; it is of dimension 10. Let Q_1, Q_2 be polynomials cutting out C_1, C_2 ; since C_1, C_2 are distinct, Q_1 and Q_2 are not scalar multiples of each other. For $i = 0, \ldots, 9$, let V_i be the subspace of polynomials which vanish at P_1, \ldots, P_8 . It is clear that dim $(V_i) \ge \dim(V_{i-1}) - 1$ for $i = 1, \ldots, 9$. We will prove that equality holds

for i = 1, ..., 8; this will then imply that $\dim(V_8) = \dim(V_9) = 2$, from which the claim will follow.

To prove the desired equality, it is enough to check that $V_i \neq V_{i-1}$ for i = 1, ..., 8. That is, we must produce elements of $V_i - V_{i-1}$ for i = 1, ..., 8, or in other words, cubic curves (possibly reducible) passing through $P_1, ..., P_{i-1}$ but not P_i . We do this as follows.

- i = 1 Any three lines not passing through P_1 .
- i = 2 Any three lines passing through P_1 but not P_2 .
- i = 3 Any line not passing through P_3 plus any conic passing through P_1, P_2 but not P_3 .
- i = 4 Any line not passing through P_4 plus any conic passing through P_1, P_2, P_3 but not P_4 .
- i = 5 Any line not passing through P_5 plus any conic passing through P_1, P_2, P_3, P_4 but not P_5 .
- i = 6 Any line passing through P_1 but not P_6 plus any conic passing through P_2 , P_3 , P_4 , P_5 but not P_6 .
- i = 7 Note that no four of our points can be collinear by Bézout's theorem. We can thus find P_j such that the line through P_1 and P_j fails to pass through P_7 . Then add a conic through the other four of P_1, \ldots, P_6 not passing through P_7 .
- i = 8 Again by Bézout, no more than six of our points can lie on a conic. If both the conic through P_1, \ldots, P_5 and the line through P_6, P_7 fail to pass through P_8 , take the union of these. If this fails because the conic passes through P_8 , then there must exist an index $j \in \{1, \ldots, 5\}$ such that the line through P_7 and P_8 fails to pass through P_j (in fact only one index can fail); take the line through P_6, P_7 passes through P_8 , then there must exist an index $j \in \{6, 7\}$ such that the conic through P_1, \ldots, P_4, P_8 fails to pass through P_j (again because only one index can fail); take the conic through P_1, \ldots, P_4, P_7 passes through P_1, \ldots, P_4, P_7 fails to pass through P_7 fails to pass through P_7 fails to pass through P_7 fails to pass through Pass thr
- 3. Pick any point O of C at which the tangent line is triply tangent (it turns out there are exactly 9 such points but we don't need to know this). We first define the inverse map: -P is the third intersection of C with the line OP. We then declare the sum P+Q to be the inverse of the third intersection of C with the line PQ; this operation is clearly symmetric and has identity O. To check associativity, let P, Q, R be any three points. Then the following sets of points are collinear:

The first three lines form one reducible cubic, while the second three form another one. Since these share eight intersection points, they must also share the ninth, so -(P+Q) - R = -P - (Q+R). This proves the desired associativity.

4. We first construct the sequence in question with $\mathcal{L} = \mathcal{O}_X$. Recall that by definition, $\mathcal{O}_X(-P)$ is the sheaf whose sections over an open subset U are the rational functions with no poles in U and, in case $P \in U$, at least a single zero at P. This is obviously a subsheaf of \mathcal{O}_X , and the restrictions of \mathcal{O}_X and $\mathcal{O}_X(-P)$ to $X - \{P\}$ coincide. So the quotient $\mathcal{O}_X/\mathcal{O}_X(-P)$ is supported at P; on any open affine subscheme Uof X containing P, it is the quasicoherent sheaf corresponding to the module over $\mathcal{O}_X(U)$ given by quotienting by the prime ideal corresponding to P. This is the desired sequence.

To get the sequence in general, note that \mathcal{L} is locally free, so tensoring with it is an exact operation. Then note that \mathcal{L} can be trivialized on some neighborhood of P, so $\mathcal{L} \otimes_{\mathcal{O}} k_P \cong k_P$.

5. It suffices to check the claim when Y is affine; in this case, X is itself quasicompact. (Namely, Y is covered by opens whose inverse images are quasicompact, but only finitely many are needed because Y is also quasicompact.) Pick open affine subsets U_1, \ldots, U_n which cover X. Because f is quasiseparated, for any i, j, the space $X \times_{X \times_Y X}$ $U_i \times_Y U_j$ is quasicompact, but this space is none other than $U_i \cap U_j$. We can thus choose finitely many open affine subsets V_{ijk} of X that cover $U_i \cap U_j$. Let \mathcal{F} be a quasicoherent sheaf on X; its pushforward is then the sheaf associated to the module which is the kernel of the map

$$\bigoplus_{i=1}^{n} \mathcal{F}(U_i) \to \bigoplus_{i,j=1}^{n} \bigoplus_{k} \mathcal{F}(V_{ijk}).$$

6. The last map in the sequence

$$0 \to M \to \bigoplus_{i=1}^n M_{f_i} \to \bigoplus_{i,j=1}^n M_{f_i f_j}$$

was defined to take $(s_i)_{i=1}^n$ to $(s_i - s_j)_{i,j=1}^n$ (where the restriction maps have been left implicit). The last map in the extended sequence

$$0 \to M \to \bigoplus_{i=1}^{n} M_{f_i} \to \bigoplus_{i,j=1}^{n} M_{f_i f_j} \to \bigoplus_{i,j,k=1}^{n} M_{f_i f_j f_k} \to \cdots$$

can be taken to send $(s_{ij})_{i,j=1}^n$ to $(s_{ij} - s_{ik} + s_{jk})_{i,j,k=1}^n$.

7. The only thing that needs to be checked is surjectivity of $\mathcal{G}(X) \to \mathcal{H}(X)$. Choose $s \in \mathcal{H}(X)$. For some open affine cover $\{U_i\}_{i \in I}$ of X, we can lift $s|_{U_i}$ to some section $t_i \in \mathcal{G}(U_i)$. By assumption, there exists an open immersion $j: Y \to X$ such that Y can be written as an affine scheme $\operatorname{Spec}(R)$ and \mathcal{F} is the pushforward of \tilde{M} for some R-module M. By making the U_i small enough, we may ensure that each intersection $U_i \cap Y$ is a distinguished open subset $D(f_i)$ of $\operatorname{Spec}(R)$.

For each pair i, j, the difference $t_i - t_j$ is a section in $\mathcal{G}(U_i \cap U_j)$ which maps to zero in $\mathcal{H}(U_i \cap U_j)$, so we can view it as a section in $\mathcal{F}(U_i \cap U_j)$ and hence as an element $m_{ij} \in M_{f_i f_j}$. Note that for all i, j, k, we have $m_{ij} + m_{jk} = m_{ik}$ because the corresponding equality in $\mathcal{G}(U_i \cap U_j \cap U_k)$ is the triviality $(t_i - t_j) + (t_j - t_k) = (t_i - t_k)$.

By the exact sequence in the previous exercise, we can find elements $m_i \in M_{f_i}$ such that $m_i - m_j = m_{ij}$. Now $t_i - m_i$ is another section of $\mathcal{G}(U_i)$ lifting s, but the differences $(t_i - m_i) - (t_j - m_j)$ vanish in $\mathcal{G}(U_i \cap U_j)$. So these patch together to give a section $t \in \mathcal{G}(X)$ lifting s.