Math 203B (Algebraic Geometry), UCSD, winter 2013 Solutions for problem set 2

1. (a) We may view $X_{i} \cap X_{j}$ as the open subscheme of X_{i} consisting of those points x for which f_{j} does not belong to the maximal ideal of the local ring $\mathcal{O}_{X, x}=\mathcal{O}_{X_{i}, x}$. But if we identify a point x of $X_{i}=\operatorname{Spec}\left(A_{i}\right)$ with a prime ideal \mathfrak{p} of A_{i}, then f_{j} is in the maximal ideal of $\mathcal{O}_{X, x}$ if and only if $f_{j} \in \mathfrak{p}$, so $X_{i} \cap X_{j}$ coincides with the distinguished open affine subscheme of $\operatorname{Spec} A_{i}$ defined by f_{j}. The latter is none other than $\operatorname{Spec} A_{i}\left[f_{j}^{-1}\right]$.
(b) Because \mathcal{O}_{X} is a sheaf, we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(X) \rightarrow \bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(X_{i}\right) \rightarrow \bigoplus_{i, j=1}^{n} \mathcal{O}_{X}\left(X_{i} \cap X_{j}\right)
$$

By replacing labels, we get

$$
0 \rightarrow A \rightarrow \bigoplus_{i=1}^{n} A_{i} \rightarrow \bigoplus_{i, j=1}^{n} A_{i j} .
$$

Since $A_{f_{k}}$ is flat over A, we get another exact sequence

$$
0 \rightarrow A_{f_{k}} \rightarrow \bigoplus_{i=1}^{n}\left(A_{i}\right)_{f_{k}} \rightarrow \bigoplus_{i, j=1}^{n}\left(A_{i j}\right)_{f_{k}}
$$

which we can rewrite using (a) as

$$
0 \rightarrow A_{f_{k}} \rightarrow \bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(X_{i} \cap X_{k}\right) \rightarrow \bigoplus_{i, j=1}^{n} \mathcal{O}_{X}\left(X_{i} \cap X_{j} \cap X_{k}\right)
$$

But from this it is clear that $A_{f_{k}}=\mathcal{O}_{X}\left(X_{k}\right)=A_{k}$.
(c) Using (b), we get a ring map $A \rightarrow A_{f_{i}} \cong A_{i}$ and hence a morphism $X_{i} \cong$ $\operatorname{Spec}\left(A_{f_{i}}\right) \rightarrow \operatorname{Spec}(A)$ of schemes. These maps agree on overlaps, so they define a morphism $X \rightarrow \operatorname{Spec}(A)$ of schemes. To see that this is an isomorphism, it suffices to check locally on A. But f_{1}, \ldots, f_{n} generate the unit ideal in A, so the distinguished opens $D\left(f_{i}\right)$ form a cover, and the restriction to $D\left(f_{i}\right)$ is the isomorphism $X_{i} \cong \operatorname{Spec}\left(A_{i}\right)$.
2. We prove the result more generally allowing C_{1}, C_{2} to be reducible as long as they have no common component. Let V be the space of homogeneous cubic polynomials in three variables over our given field; it is of dimension 10 . Let Q_{1}, Q_{2} be polynomials cutting out C_{1}, C_{2}; since C_{1}, C_{2} are distinct, Q_{1} and Q_{2} are not scalar multiples of each other. For $i=0, \ldots, 9$, let V_{i} be the subspace of polynomials which vanish at P_{1}, \ldots, P_{8}. It is clear that $\operatorname{dim}\left(V_{i}\right) \geq \operatorname{dim}\left(V_{i-1}\right)-1$ for $i=1, \ldots, 9$. We will prove that equality holds
for $i=1, \ldots, 8$; this will then imply that $\operatorname{dim}\left(V_{8}\right)=\operatorname{dim}\left(V_{9}\right)=2$, from which the claim will follow.
To prove the desired equality, it is enough to check that $V_{i} \neq V_{i-1}$ for $i=1, \ldots, 8$. That is, we must produce elements of $V_{i}-V_{i-1}$ for $i=1, \ldots, 8$, or in other words, cubic curves (possibly reducible) passing through P_{1}, \ldots, P_{i-1} but not P_{i}. We do this as follows.
$i=1$ Any three lines not passing through P_{1}.
$i=2$ Any three lines passing through P_{1} but not P_{2}.
$i=3$ Any line not passing through P_{3} plus any conic passing through P_{1}, P_{2} but not P_{3}.
$i=4$ Any line not passing through P_{4} plus any conic passing through P_{1}, P_{2}, P_{3} but not P_{4}.
$i=5$ Any line not passing through P_{5} plus any conic passing through $P_{1}, P_{2}, P_{3}, P_{4}$ but not P_{5}.
$i=6$ Any line passing through P_{1} but not P_{6} plus any conic passing through $P_{2}, P_{3}, P_{4}, P_{5}$ but not P_{6}.
$i=7$ Note that no four of our points can be collinear by Bézout's theorem. We can thus find P_{j} such that the line through P_{1} and P_{j} fails to pass through P_{7}. Then add a conic through the other four of P_{1}, \ldots, P_{6} not passing through P_{7}.
$i=8$ Again by Bézout, no more than six of our points can lie on a conic. If both the conic through P_{1}, \ldots, P_{5} and the line through P_{6}, P_{7} fail to pass through P_{8}, take the union of these. If this fails because the conic passes through P_{8}, then there must exist an index $j \in\{1, \ldots, 5\}$ such that the line through P_{7} and P_{8} fails to pass through P_{j} (in fact only one index can fail); take the line through P_{j}, P_{7} and the conic through the other five points. If instead the line through P_{6}, P_{7} passes through P_{8}, then there must exist an index $j \in\{6,7\}$ such that the conic through $P_{1}, \ldots, P_{4}, P_{8}$ fails to pass through P_{j} (again because only one index can fail); take the conic through $P_{1}, \ldots, P_{4}, P_{j}$ and the line through the other two points.
3. Pick any point O of C at which the tangent line is triply tangent (it turns out there are exactly 9 such points but we don't need to know this). We first define the inverse map: $-P$ is the third intersection of C with the line $O P$. We then declare the sum $P+Q$ to be the inverse of the third intersection of C with the line $P Q$; this operation is clearly symmetric and has identity O. To check associativity, let P, Q, R be any three points. Then the following sets of points are collinear:
$P, Q,-P-Q ;-P-Q, O, P+Q ; P+Q, R,-(P+Q)-R ; Q, R,-Q-R ;-Q-R, O, Q+R ; Q+R, P,-P-$
The first three lines form one reducible cubic, while the second three form another one. Since these share eight intersection points, they must also share the ninth, so $-(P+Q)-R=-P-(Q+R)$. This proves the desired associativity.
4. We first construct the sequence in question with $\mathcal{L}=\mathcal{O}_{X}$. Recall that by definition, $\mathcal{O}_{X}(-P)$ is the sheaf whose sections over an open subset U are the rational functions with no poles in U and, in case $P \in U$, at least a single zero at P. This is obviously a subsheaf of \mathcal{O}_{X}, and the restrictions of \mathcal{O}_{X} and $\mathcal{O}_{X}(-P)$ to $X-\{P\}$ coincide. So the quotient $\mathcal{O}_{X} / \mathcal{O}_{X}(-P)$ is supported at P; on any open affine subscheme U of X containing P, it is the quasicoherent sheaf corresponding to the module over $\mathcal{O}_{X}(U)$ given by quotienting by the prime ideal corresponding to P. This is the desired sequence.
To get the sequence in general, note that \mathcal{L} is locally free, so tensoring with it is an exact operation. Then note that \mathcal{L} can be trivialized on some neighborhood of P, so $\mathcal{L} \otimes_{\mathcal{O}} k_{P} \cong k_{P}$.
5. It suffices to check the claim when Y is affine; in this case, X is itself quasicompact. (Namely, Y is covered by opens whose inverse images are quasicompact, but only finitely many are needed because Y is also quasicompact.) Pick open affine subsets U_{1}, \ldots, U_{n} which cover X. Because f is quasiseparated, for any i, j, the space $X \times{ }_{X \times{ }_{Y} X}$ $U_{i} \times{ }_{Y} U_{j}$ is quasicompact, but this space is none other than $U_{i} \cap U_{j}$. We can thus choose finitely many open affine subsets $V_{i j k}$ of X that cover $U_{i} \cap U_{j}$. Let \mathcal{F} be a quasicoherent sheaf on X; its pushforward is then the sheaf associated to the module which is the kernel of the map

$$
\bigoplus_{i=1}^{n} \mathcal{F}\left(U_{i}\right) \rightarrow \bigoplus_{i, j=1}^{n} \bigoplus_{k} \mathcal{F}\left(V_{i j k}\right)
$$

6. The last map in the sequence

$$
0 \rightarrow M \rightarrow \bigoplus_{i=1}^{n} M_{f_{i}} \rightarrow \bigoplus_{i, j=1}^{n} M_{f_{i} f_{j}}
$$

was defined to take $\left(s_{i}\right)_{i=1}^{n}$ to $\left(s_{i}-s_{j}\right)_{i, j=1}^{n}$ (where the restriction maps have been left implicit). The last map in the extended sequence

$$
0 \rightarrow M \rightarrow \bigoplus_{i=1}^{n} M_{f_{i}} \rightarrow \bigoplus_{i, j=1}^{n} M_{f_{i} f_{j}} \rightarrow \bigoplus_{i, j, k=1}^{n} M_{f_{i} f_{j} f_{k}} \rightarrow \cdots
$$

can be taken to send $\left(s_{i j}\right)_{i, j=1}^{n}$ to $\left(s_{i j}-s_{i k}+s_{j k}\right)_{i, j, k=1}^{n}$.
7. The only thing that needs to be checked is surjectivity of $\mathcal{G}(X) \rightarrow \mathcal{H}(X)$. Choose $s \in \mathcal{H}(X)$. For some open affine cover $\left\{U_{i}\right\}_{i \in I}$ of X, we can lift $\left.s\right|_{U_{i}}$ to some section $t_{i} \in \mathcal{G}\left(U_{i}\right)$. By assumption, there exists an open immersion $j: Y \rightarrow X$ such that Y can be written as an affine scheme $\operatorname{Spec}(R)$ and \mathcal{F} is the pushforward of \tilde{M} for some R-module M. By making the U_{i} small enough, we may ensure that each intersection $U_{i} \cap Y$ is a distinguished open subset $D\left(f_{i}\right)$ of $\operatorname{Spec}(R)$.

For each pair i, j, the difference $t_{i}-t_{j}$ is a section in $\mathcal{G}\left(U_{i} \cap U_{j}\right)$ which maps to zero in $\mathcal{H}\left(U_{i} \cap U_{j}\right)$, so we can view it as a section in $\mathcal{F}\left(U_{i} \cap U_{j}\right)$ and hence as an element $m_{i j} \in M_{f_{i} f_{j}}$. Note that for all i, j, k, we have $m_{i j}+m_{j k}=m_{i k}$ because the corresponding equality in $\mathcal{G}\left(U_{i} \cap U_{j} \cap U_{k}\right)$ is the triviality $\left(t_{i}-t_{j}\right)+\left(t_{j}-t_{k}\right)=\left(t_{i}-t_{k}\right)$.
By the exact sequence in the previous exercise, we can find elements $m_{i} \in M_{f_{i}}$ such that $m_{i}-m_{j}=m_{i j}$. Now $t_{i}-m_{i}$ is another section of $\mathcal{G}\left(U_{i}\right)$ lifting s, but the differences $\left(t_{i}-m_{i}\right)-\left(t_{j}-m_{j}\right)$ vanish in $\mathcal{G}\left(U_{i} \cap U_{j}\right)$. So these patch together to give a section $t \in \mathcal{G}(X)$ lifting s.

