Math 203B (Algebraic Geometry), UCSD, winter 2013 Problem Set 3 (due Wednesday, January 30)

Solve the following problems, and turn in the solutions to *four* of them.

- 1. Let X be a scheme. Let \mathcal{F} be a quasicoherent sheaf on X which is locally finitely generated. Prove that the function $x \mapsto \dim_{\kappa(x)} \mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x$ is upper semicontinuous.
- 2. Let R be a ring. Give a careful proof that $\Omega_{R[x_1,...,x_n]/R}$ is freely generated by dx_1,\ldots,dx_n . The part that needs care is to show that there are no relations among these elements; you may wish to use the universal property of $\Omega_{R[x_1,...,x_n]/R}$.
- 3. Let R be any ring. For f in the formal Laurent series ring R((T)), the residue of the formal differential form f dT is defined as the coefficient of $T^{-1} dT$. Prove that the residue of f dT is invariant under any substitution of the from $T \mapsto a_1 T + a_2 T^2 + \cdots$ with $a_1 \in k^{\times}$ and $a_2, a_3, \cdots \in k$. Hint: reduce this to a collection of polynomial identities over \mathbb{Z} , which can then be checked using the usual residue theorem from complex analysis.
- 4. Let k be an algebraically closed field. Show that there is a unique way to assign a *residue* to each meromorphic differential ω on \mathbb{P}^1_k at each point P of \mathbb{P}^1_k satisfying the following conditions.
 - (i) For P = 0, the residue is computed by writing $\omega = f dT$ and taking the residue of f dT as in the previous exercise (i.e., the coefficient of $T^{-1} DT$).
 - (ii) If L is a linear fractional transformation, then the residue of ω at L(P) is the same as the residue of $L^*(\omega)$ at P.

For this, you may invoke the previous exercise whether or not you submit it.

- 5. Let k be an algebraically closed field. Prove the residue theorem for \mathbb{P}_k^1 : for any meromorphic differential ω on \mathbb{P}_k^1 , the sum of the residues of ω over all points of \mathbb{P}_k^1 (as defined in the previous exercise) is equal to 0. Hint: one possible approach is again reduction to the case $k = \mathbb{C}$.
- 6. Let k be an algebraically closed field. Let C be a smooth projective curve over k. Let P be a closed point of C. Using Riemann-Roch, prove that there exists a meromorphic function on C with no poles at any points other than P.
- 7. Let k be an algebraically closed field. Let C be a smooth projective curve of genus 2 over k. Using the Riemann-Roch theorem, prove the following.
 - (i) There exists a degree 2 map from C to \mathbb{P}^1_k .
 - (ii) There is an embedding of C in \mathbb{P}^3_k of degree 5.