
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 4

1. (a) To get a map f : V → Pd−1
k , it must be the case that for each closed point P of

X, the elements of V do not all have positive order of vanishing at P (so that we
get a valid set of homogeneous coordinates by evaluating at P ). If V = H0(X,L),
we have an exact sequence

0→ H0(X,L(−P ))→ V → H0(X, kP ) ∼= k

so h0(X,L(−P )) ∈ {h0(X,L), h0(X,L)− 1} with the latter case occurring if and
only if there is a section of L failing to vanish at P .

(b) Suppose that the condition described in (a) holds. Note that the condition “there
exists a section of V which vanishes at P but not at Q” is equivalent to “there
exists a hyperplane in Pd−1

k which passes through f(P ) but not f(Q)”. This
clearly happens if and only if f(P ) 6= f(Q).

If V = H0(X,L), then there is an exact sequence

0→ H0(X,L(−P −Q))→ V → H0(X, kP ⊕ kQ) ∼= k ⊕ k,

so
h0(X,L(−P −Q)) = h0(X,L)− 2

if and only if V → H0(X, kP ⊕ kQ) is surjective. If this map is surjective, then
the inverse image of 0 ⊕ 1 is a section in V which vanishes at P but not at Q.
Conversely, if there exist a section which vanishes at P but not at Q and also a
section which vanishes at Q but not at P , then the images of these two sections
must be linearly independent in kP ⊕ kQ, so the map must be surjective.

2. This time, we have an exact sequence

0→ H0(X,L(−2P ))→ V → OX,x/m
2
X,x

for t a uniformizer of X at P , and

h0(X,L(−2P )) = h0(X,L)− 2.

if and only if V → OX,x/m
2
X,x is surjective. Assuming (a) from the previous exercise,

this is equivalent to saying that H0(X,L(−P ))→ mX,x/m
2
X,x is surjective.

We will prove that this condition holds at a given point P if and only if f is a closed
immersion on some open neighborhood of P . Since we are now working locally, we
may choose a basis s0, . . . , sd−1 of V so that s1, . . . , sd−1 vanish at P but s0 does not.

PutR = k[s1/s0, . . . , sd−1/s0] and let I be the ideal ofR generated by s1/s0, . . . , sd−1/s0.
Note that f is a closed immersion in a neighborhood of P if and only if the map
R → OX,x is surjective if and only if the map I → mX,x is surjective. But by
Nakayama’s lemma, it is equivalent to say that I → mX,x/m

2
X,x is surjective, so we

have what we need.
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3. To follow the hint, start with the curve in P2
k defined by y2z = x3. This meets a typical

line in 3 points, so if this is indeed the image of the map f defined by some bundle L
on P1

k, that line bundle must have degree 3 and hence must be O(3). If we let a, b be
generators of H0(P1

k,O(1)), then O(3) is generated by a3, a2b, ab2, b3, and we now wish
to pick out three sections x, y, z for which y2z = x3. This suggests that we take

x = a2b, y = a3, z = b3.

From the first exercise, condition (a) holds since y and z do not both vanish at any
point. To check (b), note that y and z distinguish all pairs of points except those for
which a/b differ by a cube root of 1, but one can then use x to separate these. But the
closed immersion condition fails at the point where a = 0, since both x and y vanish
to order 2 there.

4. If g(X) = 0, then for any point P viewed as a divisor, deg(KX − P ) = −3 < 0, so
h0(X,KX − P ) = 0. By Riemann-Roch, we then have h0(X,P ) = 2, so there is a
nonconstant function with at worst a single pole at P and no other poles. There must
indeed be a pole at P or else the function would be constant. This function (or if you
prefer, the line bundle O(P )) now defines a map to P1 of degree 1, which is necessarily
an isomorphism (because this is true at the level of local rings).

5. Supposing that g(X) ≥ 2, to show ωX defines a map to Pg−1 we first check that
h0(X,ωX(−P )) = g − 1 for any closed point P . By Riemann-Roch,

h0(X,ωX(−P ))− h0(X,O(P )) = (2g − 3) + (1− g) = g − 2,

so it is equivalent to check that h0(X,O(P )) = 1. If this were to fail, then there would
exist a rational function on X with only one pole, but we would then have X ∼= P1

k as
in the previous exercise.

Suppose thatX fails to be a closed immersion. This means that there exist closed points
P andQ (not necessarily distinct) for which h0(X,ωX(−P−Q)) 6= h0(X,ωX)−2. Given
the previous paragraph, the only other option is h0(X,ωX(−P −Q)) = h0(X,ωX)− 1.
By Riemann-Roch again, h0(X,O(P + Q)) = 2, so there exists a rational function on
X with poles at P +Q. This function defines a 2-to-1 map to P1

k.

6. Recall that X is defined by a homogeneous polynomial of degree d, which is to say a
section of O(d) on P2

k. On P2
k, we thus have an exact sequence

0→ O → O(d)→ i∗OX → 0

which we then twist to get

0→ O(−3)→ O(d− 3)→ i∗OX(d− 3)→ 0.

Taking global sections gives an exact sequence

0→ H0(P2,O(−3))→ H0(P2 → O(d− 3))→ H0(i∗OX(d− 3)).
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The term H0(P2,O(−3)) vanishes because O(−3) has negative degree. Assuming that
the restriction map H0(P2,O(d − 3)) → H0(X,O(d − 3)) is surjective (which we will
show later by showing that H1(P2,O(−3)) vanishes) we then have g(X) = h0(P2,O(d−
3)) = (d− 1)(d− 2)/2.

7. If k is not algebraically closed, then a divisor on X is still defined as a formal sum of
closed points. However, each closed point P should now be weighted by the degree of
κ(P ) as a field extension of k.
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