Math 203B (Algebraic Geometry), UCSD, winter 2013 Problem Set 4 (due Wednesday, February 6)

Solve the following problems, and turn in the solutions to four of them. You may (and should) use the Riemann-Roch theorem! Throughout this problem set, let k be an algebraically closed field unless otherwise specified, and let X be a smooth, projective, connected variety of dimension 1 over k (i.e., a "curve").

1. Let \mathcal{L} be a line bundle over X. Let V be a finite-dimensional subspace of $H^{0}(X, \mathcal{L})$ of dimension d.
(a) I said in class that V always defines a map $f: V \rightarrow \mathbb{P}_{k}^{d-1}$. Actually this is not quite correct! Prove that this happens if and only if for any closed point P of X, there exists a section of V which does not vanish at P. Then check that if $V=H^{0}(X, \mathcal{L})$, this happens if and only if

$$
h^{0}(X, \mathcal{L}(-P))=h^{0}(X, \mathcal{L})-1
$$

Hint: the zero tuple is not a valid set of homogeneous coordinates.
(b) Suppose that the condition described in (a) holds. Prove that f is injective on points if and only if for any two distinct closed points P, Q, there exists a section of V which vanishes at P but not at Q. Then check that if $V=H^{0}(X, \mathcal{L})$, this happens if and only if

$$
h^{0}(X, \mathcal{L}(-P-Q))=h^{0}(X, \mathcal{L})-2 .
$$

2. With notation as in the previous exercise, suppose that the conditions described in (a) and (b) both hold. Then prove that f defines a closed immersion if and only if for any closed point P, there exists a section of V which vanishes at P with order exactly 1. Then check that if $V=H^{0}(X, \mathcal{L})$, this happens if and only if

$$
h^{0}(X, \mathcal{L}(-2 P))=h^{0}(X, \mathcal{L})-2
$$

3. With notation as above, construct an example where f is defined and injective on points but not a closed immersion. Hint: one possibility is to construct a map from \mathbb{P}^{1} to \mathbb{P}^{2} whose image is the cuspidal cubic curve $y^{2}=x^{3}$.
4. Prove that if $g(X)=0$, then $X \cong \mathbb{P}_{k}^{1}$. Hint: find a rational function on X with a single zero and a single pole.
5. Suppose that $g(X) \geq 2$. Using the previous exercises, prove that the canonical sheaf ω_{X} always defines a map $X \rightarrow \mathbb{P}_{X}^{g-1}$, and that this map is a closed immersion unless X admits a 2-to-1 map to \mathbb{P}^{1} (i.e., unless X is hyperelliptic).
6. Let X be a smooth curve of degree d in \mathbb{P}^{2} over k. Using the fact that $\omega_{X} \cong \mathcal{O}(d-3)$, prove that the genus of X equals $\frac{(d-1)(d-2)}{2}$. You may use without proof the fact that the restriction map $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(d-3)\right) \rightarrow H^{0}(X, \mathcal{O}(d-3))$ is surjective; we'll check this later once we have defined sheaf cohomology.
7. Suppose k is not algebraically closed. What is the correct way to define the degree of a divisor on X so that the degree of any principal divisor is still 0 ?
