Math 203B (Algebraic Geometry), UCSD, winter 2013 Solutions for problem set 5

- 1. By hypothesis, there exist $f_1, \ldots, f_n \in R$ generating the unit ideal such that \tilde{M} is finitely generated over $D(f_i)$; that is, the module M_{f_i} over R_{f_i} is finitely generated. Since every element of M_{f_i} can be written as an element of M divided by a power of f_i , we can find elements $m_{i,1}, \ldots, m_{i,n_i}$ of M whose images in M_{f_i} generate M_{f_i} as an R_{f_i} -module. Let N be the submodule of M generated by all of the $m_{i,j}$; then the map $\tilde{N} \to \tilde{M}$ is an isomorphism on stalks, so we must have N = M. Therefore M is finitely generated.
- 2. Let a, b and c, d be homogeneous coordinates on two copies of \mathbb{P}^1 . Let P(x) be a polynomial over k of degree 2g + 2 with no repeated roots, and consider the subspace of $\mathbb{P}^1 \times \mathbb{P}^1$ cut out by $d^2 = c^2 b^{2g+2} P(a/b)$. This is a curve C with a 2-to-1 map to \mathbb{P}^1 ramified at 2g + 2 points, each with ramification index 2, so Riemann-Hurwitz says that $2g(C) 2 = 2 \cdot (-2) + 2g + 2$, and so g(C) = g.
- 3. (a) Since we are in characteristic p, we have dy = -dx, so we get no ramification anywhere where dx generates $\Omega_{\mathbb{P}^1}$. Hence we get no ramification away from $x = \infty$.
 - (b) Let's change coordinates by setting t = 1/x, so we can work at t = 0. Then

$$df^*(y^{-1}) = d((x^p - x)^{-1}) = \frac{-dx}{(x^p - x)^2} = \frac{dt}{t^2(t^{-p} - t^{-1})^2} = \frac{t^{2p-2}dt}{(1 - t^{p-1})^2}$$

so the ramification index is 2p - 1.

- (c) The naïve ramification index is p because the degree of the map is p and there is only one point in the fiber.
- (d) Riemann-Hurwitz here says -2 = p(-2) + (2p 2), which checks.
- 4. For *n* sufficiently large, $H^0(C, \mathcal{O}(n))$ is isomorphic to $H^0(\mathbb{P}^2, \mathcal{O}(n))/H^0(\mathbb{P}^2, \mathcal{O}(n-d))$ and so has dimension

$$\binom{n+2}{2} - \binom{n+2-d}{2} = dn + \frac{d^2 - 3d}{2} = dn - 1 + g.$$

5. (a) By hypothesis, there exist homogeneous polynomials f_1, \ldots, f_m such that the distinguished open sets $D(f_i)$ cover \mathbb{P}^d_R and \mathcal{F} is finitely generated on $D(f_i)$. By raising the f_i to suitable powers, we may force them all to be of a single degree d. Then for each $s \in H^0(D(f_i), \mathcal{F})$, for n sufficiently large $f^n s$ lifts to a global section of $\mathcal{F}(dn)$. Putting these sections together gives a set of generators as in the first exercise. This almost proves the claim, except that we are only getting multiples of d; but if the claim holds for some n, then it also holds for n + 1 because we can just multiply the generators of $\mathcal{F}(n)$ by x_0, \ldots, x_d in turn to get generators of $\mathcal{F}(n+1)$.

- (b) Apply (a) to $j_*\mathcal{F}$.
- 6. (a) Using Zorn's lemma (or transfinite induction or your favorite other equivalent of the axiom of choice), it suffices to check the injectivity property for an injection B → C where C/B is generated by a single element c. If C/B is finite of order n, then by hypothesis we can divide the image of nc in A by n and send c there. If C/B is infinite, we can send c wherever we like (to 0, for example).
 - (b) We are saying that if a ∈ A is nonzero, then there exists b ∈ Hom(A, Q/Z) such that b(a) is nonzero. To check this, note that the subgroup of A generated by a always admits a nonzero map to Q/Z, then apply (a) to extend this map to all of A.
 - (c) Since $(\mathcal{F}_x)'$ is injective and $\mathcal{G}_x \to \mathcal{H}_x$ is an injection, the morphism $\mathcal{G}_x \to (\mathcal{F}_x)'$ extends to a morphism $\mathcal{H}_x \to (\mathcal{F}_x)'$. For each U, we map $\mathcal{H}(U)$ to $\mathcal{F}'(U)$ by injecting $\mathcal{H}(U)$ into $\prod_{x \in U} \mathcal{H}_x$ and then mapping term-by-term to $\prod_{x \in U} (\mathcal{F}_x)' = \mathcal{F}'(U)$.