Math 203B (Algebraic Geometry), UCSD, winter 2013 Solutions for problem set 5

1. By hypothesis, there exist $f_{1}, \ldots, f_{n} \in R$ generating the unit ideal such that \tilde{M} is finitely generated over $D\left(f_{i}\right)$; that is, the module $M_{f_{i}}$ over $R_{f_{i}}$ is finitely generated. Since every element of $M_{f_{i}}$ can be written as an element of M divided by a power of f_{i}, we can find elements $m_{i, 1}, \ldots, m_{i, n_{i}}$ of M whose images in $M_{f_{i}}$ generate $M_{f_{i}}$ as an $R_{f_{i}}$-module. Let N be the submodule of M generated by all of the $m_{i, j}$; then the map $\tilde{N} \rightarrow \tilde{M}$ is an isomorphism on stalks, so we must have $N=M$. Therefore M is finitely generated.
2. Let a, b and c, d be homogeneous coordinates on two copies of \mathbb{P}^{1}. Let $P(x)$ be a polynomial over k of degree $2 g+2$ with no repeated roots, and consider the subspace of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ cut out by $d^{2}=c^{2} b^{2 g+2} P(a / b)$. This is a curve C with a 2-to- 1 map to \mathbb{P}^{1} ramified at $2 g+2$ points, each with ramification index 2 , so Riemann-Hurwitz says that $2 g(C)-2=2 \cdot(-2)+2 g+2$, and so $g(C)=g$.
3. (a) Since we are in characteristic p, we have $d y=-d x$, so we get no ramification anywhere where $d x$ generates $\Omega_{\mathbb{P}^{1}}$. Hence we get no ramification away from $x=\infty$.
(b) Let's change coordinates by setting $t=1 / x$, so we can work at $t=0$. Then

$$
d f^{*}\left(y^{-1}\right)=d\left(\left(x^{p}-x\right)^{-1}\right)=\frac{-d x}{\left(x^{p}-x\right)^{2}}=\frac{d t}{t^{2}\left(t^{-p}-t^{-1}\right)^{2}}=\frac{t^{2 p-2} d t}{\left(1-t^{p-1}\right)^{2}}
$$

so the ramification index is $2 p-1$.
(c) The naïve ramification index is p because the degree of the map is p and there is only one point in the fiber.
(d) Riemann-Hurwitz here says $-2=p(-2)+(2 p-2)$, which checks.
4. For n sufficiently large, $H^{0}(C, \mathcal{O}(n))$ is isomorphic to $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(n)\right) / H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(n-d)\right)$ and so has dimension

$$
\binom{n+2}{2}-\binom{n+2-d}{2}=d n+\frac{d^{2}-3 d}{2}=d n-1+g .
$$

5. (a) By hypothesis, there exist homogeneous polynomials f_{1}, \ldots, f_{m} such that the distinguished open sets $D\left(f_{i}\right)$ cover \mathbb{P}_{R}^{d} and \mathcal{F} is finitely generated on $D\left(f_{i}\right)$. By raising the f_{i} to suitable powers, we may force them all to be of a single degree d. Then for each $s \in H^{0}\left(D\left(f_{i}\right), \mathcal{F}\right)$, for n sufficiently large $f^{n} s$ lifts to a global section of $\mathcal{F}(d n)$. Putting these sections together gives a set of generators as in the first exercise. This almost proves the claim, except that we are only getting multiples of d; but if the claim holds for some n, then it also holds for $n+1$ because we can just multiply the generators of $\mathcal{F}(n)$ by x_{0}, \ldots, x_{d} in turn to get generators of $\mathcal{F}(n+1)$.
(b) Apply (a) to $j_{*} \mathcal{F}$.
6. (a) Using Zorn's lemma (or transfinite induction or your favorite other equivalent of the axiom of choice), it suffices to check the injectivity property for an injection $B \rightarrow C$ where C / B is generated by a single element c. If C / B is finite of order n, then by hypothesis we can divide the image of $n c$ in A by n and send c there. If C / B is infinite, we can send c wherever we like (to 0 , for example).
(b) We are saying that if $a \in A$ is nonzero, then there exists $b \in \operatorname{Hom}(A, \mathbb{Q} / \mathbb{Z})$ such that $b(a)$ is nonzero. To check this, note that the subgroup of A generated by a always admits a nonzero map to \mathbb{Q} / \mathbb{Z}, then apply (a) to extend this map to all of A.
(c) Since $\left(\mathcal{F}_{x}\right)^{\prime}$ is injective and $\mathcal{G}_{x} \rightarrow \mathcal{H}_{x}$ is an injection, the morphism $\mathcal{G}_{x} \rightarrow\left(\mathcal{F}_{x}\right)^{\prime}$ extends to a morphism $\mathcal{H}_{x} \rightarrow\left(\mathcal{F}_{x}\right)^{\prime}$. For each U, we map $\mathcal{H}(U)$ to $\mathcal{F}^{\prime}(U)$ by injecting $\mathcal{H}(U)$ into $\prod_{x \in U} \mathcal{H}_{x}$ and then mapping term-by-term to $\prod_{x \in U}\left(\mathcal{F}_{x}\right)^{\prime}=$ $\mathcal{F}^{\prime}(U)$.
