
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 6

1. There are enough proofs of the snake lemma posted online that it hardly seems neces-
sary to include one here. See for example http://planetmath.org/?op=getobj&id=

5578&from=objects.

2. (a) Both the hypothesis and the conclusion are preserved by tensoring with O(n):
that is, we can tensor with O(n), make the splitting, then tensor with O(−n).
So we may as well assume that n2 = 0 and n1 ≥ 0. In this case, the long exact
sequence in cohomology reads

H0(P1
k,F)→ H0(P1

k,O)→ H1(P1
k,O(n1))

but the last term vanishes by the calculations made in class. So any nonzero
section of O lifts to F , which gives the splitting.

(b) Again, we can tensor with O(n), produce a new exact sequence, then tensor with
O(−n) at the end. So we may assume n1 = −1 and n2 ≥ 0. This time, the long
exact sequence in cohomology reads

H0(P1
k,F)→ H0(P1

k,O(n2))→ H1(P1
k,O(−1))

and again the last term is zero, so F must admit a nonzero section. Use some
such section to form the exact sequence

0→ O → F → G → 0.

Here we should be careful: the quotient G is of rank 1 but might have some
torsion. But since we are in dimension 1 (or if you prefer, because the rings of
sections are all PIDs), the quotient G ′ of G by its torsion is free of rank 1. So now
I have a new exact sequence

0→ H→ F → G ′ → 0

in which G ′ and H are both locally free of rank 1 and H admits a nonzero section
(since it contains the copy of O from the previous exact sequence). Since every
line bundle on P1

k is an O(n) for some n, we can rewrite this exact sequence as

0→ O(n′1)→ F → O(n′2)→ 0

for some n′1, n
′
2 ∈ Z. Since O(n′1) admits a nonzero section, we must have n′1 ≥ 0;

since
O(n′1 + n′2)

∼= ∧2F ∼= O(n1 + n2),

we must have n′2 = n2 − (n′1 − n1). This proves the claim.
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3. (a) By a previous homework, for n sufficiently large, F(n) is generated by global
sections, so we can find an exact sequence

0→ O → F → G → 0.

By replacing G with its torsion-free quotient G ′ as in the previous exercise, we can
turn this into a new exact sequence

0→ H→ F → G ′ → 0

in which H is locally free of rank 1 (and hence isomorphic to some O(n1)) and G ′
is locally free of rank d− 1. We may thus continue by induction.

(b) For any filtration as in (a), we have

∧dF ∼=
d⊗

i=1

Fi/Fi−1,

so the sum n1 + · · ·+ nd is independent of the filtration. Suppose there exists an
index i for which ni ≤ ni−1 − 1. Apply the previous exercise to Fi/Fi−2 to get a
new filtration

0→ O(ni−1 + c)→ Fi/Fi−2 → O(ni − c)→ 0

for some positive integer c. If we change the original filtration by replacing Fi−1
with the inverse image of O(ni−1 + c) under the map Fi → Fi/Fi−2, we get a new
filtration with the values ni−1, ni replaced by ni−1 + c, ni − c.

Now the plan is to perform this operation until we no longer can; for this to work,
we must check that the process is forced to terminate after some finite number of
steps. One way to quantify this is to look at the quantities

n1, n1 + n2, · · · , n1 + · · ·+ nd.

At each step, one of these numbers gets bigger and the rest remain unchanged.
However, n1 cannot grow without bound, as otherwise we would have

dimk H
0(P1

k,F) ≥ dimk H
0(P1

k,O(n)) = n + 1

for arbitrarily large n, contradicting the fact that H0(P1
k,F) is finite-dimensional

over k. So at some point n1 must stop growing. After that point, F1 remains
fixed forever, so we can apply the same argument to F/F1 to see that at some
point n1 + n2 must stop growing, and so on.

Once the process stops, we must have n1 ≥ n2 ≥ · · · ≥ nd. It will complete the
proof to show that under this condition, the whole filtration splits into a direct
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sum. We check this by induction on d, there being nothing to check for d = 1. If
d ≥ 2, then by the previous problem the exact sequence

0→ O(nd−1)→ F/Fd−2 → O(nd)→ 0

splits. Choose a splitting F/Fd−2 ∼= O(nd−1) ⊕ O(nd) and let G be the inverse
image of O(nd) under the surjection F → F/Fd−2. Then G is of rank d− 1 and
admits the filtration

0 ⊂ F1 ⊂ · · · ⊂ Fd−2 ⊆ G

where the successive quotients are O(n1), . . . ,O(nd−2),O(nd). Since the degrees
are again nondecreasing, we can use the induction hypothesis to split this; that
is, we get an isomorphism G ∼= O(n1)⊕ · · · ⊕ O(nd−2)⊕O(nd) and a short exact
sequence

0→ O(n1)⊕ · · · ⊕ O(nd−2)⊕O(nd)→ F → O(nd−1)→ 0.

All that remains is to split this last sequence; for this, we may assume nd−1 = 0,
so that the task at hand is to show that

H0(P1
k,F)→ H0(P1

k,O)

is surjective. The next term in the long exact sequence is

H1(P1
k,O(n1)⊕ · · · ⊕ O(nd−2)⊕O(nd))

= H1(P1
k,O(n1))⊕ · · · ⊕H1(P1

k,O(nd−2))⊕H1(P1
k,O(nd)).

Since n1 ≥ · · · ≥ nd−2 ≥ nd−1 = 0, all of the terms H1(P1
k,O(ni)) for i = 1, . . . , d−

2 vanish, so the term in question is just H1(P1
k,O(nd)). But the connecting map

H0(P1
k,O)→ H1(P1

k,O(nd)) is the same one that comes from the exact sequence

0→ O(nd−1)→ F/Fd−2 → O(nd)→ 0

which we already know is split. So this connecting map must be zero, giving the
desired surjectivity.

4. (a) Let f : X → Y = Spec(A) be a closed immersion. The kernel of f ] is a quasico-
herent subsheaf of the structure sheaf on OX , so corresponds to an A-submodule
I of A. But then X ∼= Spec(A/I).

(b) The definition of a closed immersion is local on the target (i.e., both the topological
part and the sheaf-theoretic part can be checked locally on the target), so we may
assume that both X and Z are affine. By (a), Y is also affine, so we may view
X = Spec(A), Y = Spec(A/I), Z = Spec(B). Let f : A → B be the ring
homomorphism corresponding to Z → X; then Y ×X Z → Z corresponds to the
map B → B/f(I)B and so is a closed immersion.
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5. (a) Put Y = X ×SpecZ X. Recall first that the open subscheme U1 ∩ U2 of X can
be identified with U1 ×X U2: there are obvious open immersions U1 ∩ U2 → U1,
U1 ∩ U2 → U2 such that the compositions U1 ∩ U2 → U1 → X and U1 ∩ U2 →
U2 → X coincide, so there is a map U1∩U2 → U1×X U2. To check that this is an
isomorphism, it is sufficient to check in a neighborhood of a point of U1 ×X U2.
That point maps to specific points of U1, U2, X and we may work locally around
all of those, so we may assume X = SpecA is affine and U1 = D(f1), U2 = D(f2)
are distinguished open subsets. But then U1 ∩ U2 = D(f1f2) and U1 ×X U2 =
Spec(Af1 ⊗A Af2), so the identification is clear.

Now we change the identification by producing an isomorphism

U1 ×X U2
∼= (U1 ×SpecZ U2)×Y X.

This is most easily explained by picture: the left side is the universal object
mapping into the diagram

U1

##

U2

{{
X

��
SpecZ

while the right side is the universal object mapping into the diagram

U1

##

��

U2

yy

��

X

ww ��

SpecZ

��

X

%%

X

{{
SpecZ

and these two diagrams depict equivalent data. Namely, one can transform the
second diagram into the first without losing any data by removing the upper
SpecZ, reversing the isomorphisms X → X, and contracting the compositions
Ui → X → X into single arrows Ui → X. Since X → Y is a closed immersion, so
therefore is

U1 ∩ U2 = (U1 ×SpecZ U2)×Y X → U1 ×SpecZ U2

by the previous problem. But the target of this closed immersion is affine: it is
Spec(O(U1)⊗Z O(U2)). By the previous problem again, U1 ∩ U2 is therefore also
affine.
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(b) Note that the fiber of (2) under X → SpecZ contains 2 points, while the fiber
of (2) under X ×SpecZ X → SpecZ contains 4 points. All 4 of these points are
in the closure of ∆(X), but only two of them belong to ∆(X). So ∆ is not a
homeomorphism of X onto a closed subset of X ×SpecZ X, and so cannot be a
homeomorphism. (Compare Hartshorne example II.4.0.1.)

6. (a) Locally on Y , a closed immersion has the form Spec(A/I) → Spec(A), F cor-
responds to an A/I-module, and i∗F corresponds to the same module but now
viewed over A via the map A → A/I. So it’s again quasicoherent. (Or if you
prefer, a closed immersion is quasicompact and quasiseparated, so the criterion
from an earlier homework applies.)

(b) Same argument as in (a).

(c) This follows from problem 4(a).

(d) If we use coverings as in (c), then we can match up the Čech complexes term-by-
term, so the cohomology must also match.

7. (a) As suggested in the hint, we would like to define for each open set U a sheaf OU

of abelian groups such that the morphisms OU → F of sheaves correspond to
elements of F(U). In particular, we should have

OU,x =

{
Z x ∈ U

0 x /∈ U
.

One might be tempted to try a direct sum of skyscraper sheaves but that won’t
work. The right construction is the extension by zero, which is the sheafification
OU of the presheaf defined by

V 7→

{
Z V ⊆ U

0 V 6⊆ U.

Now the inclusion U ⊆ V defines an injection OU → OV , so every morphism
OU → F extends to a morphism OU → F . That indeed means that every
element of F(U) extends to an element of F(V ), so F is flasque.

(b) Let s ∈ H(X) be a section. Since G → H is surjective, we can find an open cover
{Ui}i∈I of X such that the restriction of s to Ui lifts to some section ti ∈ G(Ui).

Use the axiom of choice to impose a well ordering on the index set I (or assume
X is quasicompact so that I is only a finite set), and put Vi = ∪j<iUi. We will
build a coherent sequence of sections ui ∈ G(Vi) lifting s as follows.

• For i the initial element of I, we put ui = 0.

• For i a limit element, we apply the sheaf axiom to glue the uj for j < i
together to make ui. (This step doesn’t occur in the quasicompact case.)
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• For i a successor element, note that ui−1 − ti ∈ G(Ui ∩ Vi) maps to zero in
H(Ui∩Vi), so it is the image of an element vi ∈ F(Ui∩Vi). Since F is flasque,
vi is the restriction of some wi ∈ F(Ui), which we will also view as an element
of G(Ui). Then wi maps to zero in H(Ui), so ti +wi ∈ G(Ui) also lifts s, but it
also agrees with ui−1 in G(Ui ∩ Vi). So we can glue ti + wi and ui−1 together
to get ui.
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