Math 203B (Algebraic Geometry), UCSD, winter 2013 Solutions for problem set 7

1. If $f: X \rightarrow Y$ is finite and $Y=\operatorname{Spec}(A)$ is affine, then $f_{*} \mathcal{O}_{X}$ is a \mathcal{O}_{Y}-algebra whose underlying \mathcal{O}_{Y}-module is quasicoherent and finitely generated. By a previous homework problem, it has the form \tilde{B} for some finitely generated A-module B, which also inherits a ring structure. Since $\mathcal{O}_{X}(X)=B$, we have a map $X \rightarrow \operatorname{Spec}(B)$; by working locally over Y we may check that this map is an isomorphism.
2. (a) In ω_{X}, we have the relation

$$
2 y d y=P^{\prime}(x) d x
$$

In particular, $s=d x /(2 y)$ is a section of ω_{Y} over the complement of $P(x)=0$ in X and over the complement of $P^{\prime}(x)=0$ in X. But since P has no repeated roots, $P(x)$ and $P^{\prime}(x)$ are coprime, and we get a section of ω_{Y} over all of X. For the same reason, $x^{i} s$ is a section of ω_{Y} over all of X.
It remains to check the order of vanishing at the point at infinity. For this, we note that y has $2 g+1$ simple zeroes on X and so must have a pole of order $2 g+1$ at ∞, while $x-c$ has 2 simple zeroes on X for most c (with some exceptions where roots come together) and so have a pole of order 2 at ∞. This means that $d x$ has a pole of order 3 at ∞, so $x^{i} s$ has order of vanishing $-2 i-3+(2 g+1)=2(g-1-i)$. We get a section of ω_{Y} over all of Y if and only if this order of vanishing is nonnegative, i.e., for $i=0, \ldots, g-1$.
(b) We can write any element of $H^{0}\left(X, \omega_{X}\right)$ as $(Q(x)+2 R(x) y) s$. In the cokernel of d, the term $2 R(x) y s$ vanishes because it is $R(x) d x$, so we need only consider $Q(x) s$. But note that

$$
d\left(x^{n} y\right)=n x^{n-1} y d x+x^{n} d y=\left(2 n x^{n-1} P(x) S^{\prime}(x)+x^{n} P^{\prime}(x)\right) s
$$

and that $2 n x^{n-1} P(x) S^{\prime}(x)+x^{n} P^{\prime}(x)$ is of degree exactly $n+2 g$ because the coefficient of $x^{n+2 g}$ is $2 n+(2 g+1) \neq 0$. So in the cokernel of d, we can rewrite $Q(x) s$ in terms of a lower-degree polynomial unless $\operatorname{deg}(Q) \leq 2 g-1$.
3. We start with the given exact sequence

$$
0 \rightarrow \Omega \rightarrow \mathcal{O}(-1)^{\oplus(n+1)} \rightarrow \mathcal{O} \rightarrow 0
$$

which we already know about. We may identify the middle term with $\wedge^{j} \mathcal{O}(-1)^{\oplus(n+1)}$. To get the sequence

$$
0 \rightarrow \Omega^{j} \rightarrow \mathcal{O}(-j)^{\oplus\binom{n+1}{j}} \rightarrow \Omega^{j-1} \rightarrow 0
$$

it suffices to show that for any ring R and any short exact sequence

$$
0 \rightarrow M \rightarrow N \rightarrow R \rightarrow 0
$$

of finite free modules, for each $j>0$ there is a natural (i.e., not dependent on choices of bases) exact sequence

$$
0 \rightarrow \wedge^{j} M \rightarrow \wedge^{j} N \rightarrow \wedge^{j-1} M \rightarrow 0
$$

The map from $\wedge^{j} M$ to $\wedge^{j} N$ is clear. To make a map from $\wedge^{j} N$ to $\wedge^{j-1} M$, it suffices to make a multilinear map $f: N^{\oplus j} \rightarrow \wedge^{j-1} M$ which is alternating (i.e., f evaluates to 0 whenever two of its inputs coincide). Let $\pi: N \rightarrow R$ be the map in the exact sequence. We then set

$$
f\left(n_{1}, \ldots, n_{j}\right)=\bigwedge_{i=2}^{j}\left(\pi\left(n_{1}\right) n_{i}-\pi\left(n_{i}\right) n_{1}\right) .
$$

Note that $\pi\left(\pi\left(n_{1}\right) n_{i}-\pi\left(n_{i}\right) n_{1}\right)=\pi\left(n_{1}\right) \pi\left(n_{i}\right)-\pi\left(n_{i}\right) \pi\left(n_{1}\right)=0$, so $\pi\left(n_{1}\right) n_{i}-\pi\left(n_{i}\right) n_{1}$ may be viewed as an element of M; we thus have a map $f: N^{\oplus j} \rightarrow \wedge^{j-1} M$. Moreover, it is obvious that $f\left(n_{1}, \ldots, n_{j}\right)=0$ whenever $n_{1}=n_{i}$ for some $i>1$ (because then there is a zero term in the wedge product) or whenever $n_{i}=n_{i^{\prime}}$ for some $1<i<i^{\prime} \leq j$ (because then there are two identical terms in the wedge product).
4. We will show that for $i, j=0, \ldots, n$,

$$
H^{i}\left(X, \Omega^{j}\right)= \begin{cases}R & i=j \\ 0 & i \neq j\end{cases}
$$

For $j=0$, this is the calculation of $H^{i}\left(X, \mathcal{O}_{X}\right)$ from class. For $0<j \leq n$, using the exact sequence

$$
0 \rightarrow \Omega^{j} \rightarrow \mathcal{O}(-j)^{\oplus\binom{n+1}{j}} \rightarrow \Omega^{j-1} \rightarrow 0
$$

from the previous exercise, we obtain a long exact sequence

$$
H^{i-1}(X, \mathcal{O}(-j))^{\oplus\binom{n+1}{j}} \rightarrow H^{i-1}\left(X, \Omega^{j-1}\right) \rightarrow H^{i}\left(X, \Omega^{j}\right) \rightarrow H^{i}(X, \mathcal{O}(-j))^{\oplus\binom{n+1}{j}}
$$

which also works for $i=0$ if we interpret H^{-1} to be zero. Since $0<j \leq n$, $H^{i}(X, \mathcal{O}(-j))=0$ for all i, so we have an isomorphism

$$
H^{i-1}\left(X, \Omega^{j-1}\right) \cong H^{i}\left(X, \Omega^{j}\right)
$$

This yields the claim by induction on j.
5. (a) By a previous homework, every sheaf injects into an injective sheaf. So we may first construct

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{0}
$$

By the same argument, we may construct

$$
0 \rightarrow \mathcal{I}_{0} / \mathcal{F} \xrightarrow{d_{0}} \mathcal{I}_{1}
$$

and then

$$
0 \rightarrow \mathcal{I}_{1} / \operatorname{im}\left(d_{0}\right) \rightarrow \mathcal{I}_{2}
$$

and so on.
(b) Because \mathcal{I}_{0} is injective and $\mathcal{G} \rightarrow \mathcal{J}_{0}$ is an injection, we may extend $\mathcal{G} \xrightarrow{f} \mathcal{F} \rightarrow \mathcal{I}_{0}$ to get $f_{0}: \mathcal{J}_{0} \rightarrow \mathcal{I}_{0}$. Similarly, we may extend $J_{0} / \mathcal{G} \xrightarrow{f_{0}} \mathcal{I}_{0} / \mathcal{F} \xrightarrow{d_{0}} \mathcal{I}_{1}$ to a map $f_{1}: \mathcal{J}_{1} \rightarrow \mathcal{I}_{1}$ and so on.
(c) Since $f=0, f_{0}$ factors through a map $\mathcal{J}_{0} / \mathcal{G} \rightarrow \mathcal{I}_{0}$. Since $\mathcal{J}_{0} / \mathcal{G}$ injects into \mathcal{J}_{1}, we may use the injectivity of \mathcal{I}_{0} to extend $\mathcal{J}_{0} / \mathcal{G} \rightarrow \mathcal{I}_{0}$ to $h_{1}: \mathcal{J}_{1} \rightarrow \mathcal{I}_{0}$. Similarly, $f_{1}-d_{0} \circ h_{1}$ factors through a map $\mathcal{J}_{1} / \operatorname{im}\left(e_{0}\right) \rightarrow \mathcal{I}_{1}$, so we may use injectivity of \mathcal{I}_{1} to obtain h_{2} and so on.
6. (a) For a fixed choice of resolutions of \mathcal{F} and \mathcal{G}, a map $H^{i}(X, \mathcal{G}) \rightarrow H^{i}(X, \mathcal{F})$ corresponding to f can be defined using part (b) of the previous problem. To show that this map doesn't depend on any choices made in (b), it is enough to check that if $f=0$ then the induced maps $H^{i}(X, \mathcal{G}) \rightarrow H^{i}(X, \mathcal{F})$ are all zero. But in that case, we may use part (c) of the previous problem to write $f_{i}=h_{i+1} \circ e_{i}+d_{i-1} \circ h_{i}$ and then note that $h_{i+1} \circ e_{i}$ is zero on $\operatorname{ker}\left(\mathcal{J}_{i}(X) \rightarrow \mathcal{J}_{i+1}(X)\right)$ while $d_{i-1} \circ h_{i}$ has image contained in $\operatorname{im}\left(\mathcal{I}_{i-1}(X) \rightarrow \mathcal{I}_{i}(X)\right)$. So f_{i} is the sum of two maps which both induce the zero map $H^{i}(X, \mathcal{G}) \rightarrow H^{i}(X, \mathcal{F})$.
(b) Write $H^{i}(X, \mathcal{F})$ and $H^{i}(X, \mathcal{F})^{\prime}$ for the groups computed using two different resolutions. From (a), we get maps $H^{i}(X, \mathcal{F}) \rightarrow H^{i}(X, \mathcal{F})^{\prime}$ and $H^{i}(X, \mathcal{F})^{\prime} \rightarrow H^{i}(X, \mathcal{F})$. When we compose these one way, we get maps $H^{i}(X, \mathcal{F}) \rightarrow H^{i}(X, \mathcal{F})$ corresponding to the identity map $\mathcal{F} \rightarrow \mathcal{F}$. But by (a), no matter how these maps were constructed they must agree with the maps induced by taking the trivial diagram

in which all of the f_{i} are identity maps. Hence the induced map $H^{i}(X, \mathcal{F}) \rightarrow$ $H^{i}(X, \mathcal{F})$ is the identity, and likewise for the composition in the other direction. We may thus view our maps as defining a distinguished isomorphism $H^{i}(X, \mathcal{F}) \cong$ $H^{i}(X, \mathcal{F})^{\prime}$.
(c) If \mathcal{F} is injective, then it by itself forms an injective resolution of itself, so by definition $H^{i}(X, \mathcal{F})=0$ for all $i>0$.
7. (a) Choose a well-ordering of I. Given a 1-cocycle $\left(s_{i_{0} i_{1}}\right)_{i_{0}, i_{1} \in I}$ (so that $s_{i_{1} i_{2}}-s_{i_{0} i_{2}}+$ $s_{i_{0} i_{1}}=0$ for all $i_{0}, i_{1}, i_{2} \in I$, we will build a sequence of sections $u_{i} \in \mathcal{F}\left(U_{i}\right)$ for which $u_{j}-u_{k}=s_{j k}$ for all $j, k \leq i$ as follows. Suppose that the u_{j} have been constructed for all $j<i$. Because we started with a cocycle, the sections $u_{j}-s_{j i} \in \mathcal{F}\left(U_{i j}\right)$ glue to an element of $\mathcal{F}\left(\cup_{j<i} U_{i j}\right)$. Since \mathcal{F} is flasque, this element extends to an element u_{i} of $\mathcal{F}(U)$ doing what we want.
(b) Construct an exact sequence

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0
$$

with \mathcal{G} injective. By a previous exercise,

$$
0 \rightarrow \mathcal{F}(X) \rightarrow \mathcal{G}(X) \rightarrow \mathcal{H}(X) \rightarrow 0
$$

is exact. Since we also have an exact sequence

$$
H^{0}(X, \mathcal{G}) \rightarrow H^{0}(X, \mathcal{H}) \rightarrow H^{1}(X, \mathcal{F}) \rightarrow H^{1}(X, \mathcal{G})
$$

the map $H^{1}(X, \mathcal{F}) \rightarrow H^{1}(X, \mathcal{G})$ is injective. But $H^{1}(X, \mathcal{G})=0$ by the previous exercise, so $H^{1}(X, \mathcal{F})=0$.
This gives the base case of an induction on i. Given the vanishing for i, the long exact sequence gives us

$$
0=H^{i}(X, \mathcal{H}) \rightarrow H^{i+1}(X, \mathcal{F}) \rightarrow H^{i+1}(X, \mathcal{G})=0
$$

and so $H^{i+1}(X, \mathcal{F})=0$.

