
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 7

1. If f : X → Y is finite and Y = Spec(A) is affine, then f∗OX is a OY -algebra whose
underlying OY -module is quasicoherent and finitely generated. By a previous home-
work problem, it has the form B̃ for some finitely generated A-module B, which also
inherits a ring structure. Since OX(X) = B, we have a map X → Spec(B); by working
locally over Y we may check that this map is an isomorphism.

2. (a) In ωX , we have the relation

2y dy = P ′(x) dx.

In particular, s = dx/(2y) is a section of ωY over the complement of P (x) = 0
in X and over the complement of P ′(x) = 0 in X. But since P has no repeated
roots, P (x) and P ′(x) are coprime, and we get a section of ωY over all of X. For
the same reason, xis is a section of ωY over all of X.

It remains to check the order of vanishing at the point at infinity. For this, we note
that y has 2g+1 simple zeroes on X and so must have a pole of order 2g+1 at∞,
while x−c has 2 simple zeroes on X for most c (with some exceptions where roots
come together) and so have a pole of order 2 at∞. This means that dx has a pole
of order 3 at ∞, so xis has order of vanishing −2i− 3 + (2g + 1) = 2(g − 1− i).
We get a section of ωY over all of Y if and only if this order of vanishing is
nonnegative, i.e., for i = 0, . . . , g − 1.

(b) We can write any element of H0(X,ωX) as (Q(x) + 2R(x)y)s. In the cokernel
of d, the term 2R(x)ys vanishes because it is R(x) dx, so we need only consider
Q(x)s. But note that

d(xny) = nxn−1y dx+ xn dy = (2nxn−1P (x)S ′(x) + xnP ′(x))s

and that 2nxn−1P (x)S ′(x) + xnP ′(x) is of degree exactly n + 2g because the
coefficient of xn+2g is 2n + (2g + 1) 6= 0. So in the cokernel of d, we can rewrite
Q(x)s in terms of a lower-degree polynomial unless deg(Q) ≤ 2g − 1.

3. We start with the given exact sequence

0→ Ω→ O(−1)⊕(n+1) → O → 0

which we already know about. We may identify the middle term with ∧jO(−1)⊕(n+1).
To get the sequence

0→ Ωj → O(−j)⊕(n+1
j ) → Ωj−1 → 0,

it suffices to show that for any ring R and any short exact sequence

0→M → N → R→ 0
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of finite free modules, for each j > 0 there is a natural (i.e., not dependent on choices
of bases) exact sequence

0→ ∧jM → ∧jN → ∧j−1M → 0.

The map from ∧jM to ∧jN is clear. To make a map from ∧jN to ∧j−1M , it suffices
to make a multilinear map f : N⊕j → ∧j−1M which is alternating (i.e., f evaluates
to 0 whenever two of its inputs coincide). Let π : N → R be the map in the exact
sequence. We then set

f(n1, . . . , nj) =

j∧
i=2

(π(n1)ni − π(ni)n1).

Note that π(π(n1)ni − π(ni)n1) = π(n1)π(ni) − π(ni)π(n1) = 0, so π(n1)ni − π(ni)n1

may be viewed as an element of M ; we thus have a map f : N⊕j → ∧j−1M . Moreover,
it is obvious that f(n1, . . . , nj) = 0 whenever n1 = ni for some i > 1 (because then
there is a zero term in the wedge product) or whenever ni = ni′ for some 1 < i < i′ ≤ j
(because then there are two identical terms in the wedge product).

4. We will show that for i, j = 0, . . . , n,

H i(X,Ωj) =

{
R i = j

0 i 6= j.

For j = 0, this is the calculation of H i(X,OX) from class. For 0 < j ≤ n, using the
exact sequence

0→ Ωj → O(−j)⊕(n+1
j ) → Ωj−1 → 0,

from the previous exercise, we obtain a long exact sequence

H i−1(X,O(−j))⊕(n+1
j ) → H i−1(X,Ωj−1)→ H i(X,Ωj)→ H i(X,O(−j))⊕(n+1

j )

which also works for i = 0 if we interpret H−1 to be zero. Since 0 < j ≤ n,
H i(X,O(−j)) = 0 for all i, so we have an isomorphism

H i−1(X,Ωj−1) ∼= H i(X,Ωj).

This yields the claim by induction on j.

5. (a) By a previous homework, every sheaf injects into an injective sheaf. So we may
first construct

0→ F → I0.
By the same argument, we may construct

0→ I0/F
d0→ I1

and then
0→ I1/ im(d0)→ I2

and so on.
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(b) Because I0 is injective and G → J0 is an injection, we may extend G f→ F → I0
to get f0 : J0 → I0. Similarly, we may extend J0/G

f0→ I0/F
d0→ I1 to a map

f1 : J1 → I1 and so on.

(c) Since f = 0, f0 factors through a map J0/G → I0. Since J0/G injects into J1,
we may use the injectivity of I0 to extend J0/G → I0 to h1 : J1 → I0. Similarly,
f1 − d0 ◦ h1 factors through a map J1/ im(e0)→ I1, so we may use injectivity of
I1 to obtain h2 and so on.

6. (a) For a fixed choice of resolutions of F and G, a map H i(X,G)→ H i(X,F) corre-
sponding to f can be defined using part (b) of the previous problem. To show that
this map doesn’t depend on any choices made in (b), it is enough to check that
if f = 0 then the induced maps H i(X,G) → H i(X,F) are all zero. But in that
case, we may use part (c) of the previous problem to write fi = hi+1 ◦ei +di−1 ◦hi
and then note that hi+1 ◦ ei is zero on ker(Ji(X)→ Ji+1(X)) while di−1 ◦ hi has
image contained in im(Ii−1(X) → Ii(X)). So fi is the sum of two maps which
both induce the zero map H i(X,G)→ H i(X,F).

(b) Write H i(X,F) and H i(X,F)′ for the groups computed using two different resolu-
tions. From (a), we get maps H i(X,F)→ H i(X,F)′ and H i(X,F)′ → H i(X,F).
When we compose these one way, we get maps H i(X,F)→ H i(X,F) correspond-
ing to the identity map F → F . But by (a), no matter how these maps were
constructed they must agree with the maps induced by taking the trivial diagram

0 // F //

f
��

I0
e0 //

f0
��

I1
e1 //

f1
��

· · ·

0 // F // I0
d0 // I1

d1 // · · ·

in which all of the fi are identity maps. Hence the induced map H i(X,F) →
H i(X,F) is the identity, and likewise for the composition in the other direction.
We may thus view our maps as defining a distinguished isomorphism H i(X,F) ∼=
H i(X,F)′.

(c) If F is injective, then it by itself forms an injective resolution of itself, so by
definition H i(X,F) = 0 for all i > 0.

7. (a) Choose a well-ordering of I. Given a 1-cocycle (si0i1)i0,i1∈I (so that si1i2 − si0i2 +
si0i1 = 0 for all i0, i1, i2 ∈ I), we will build a sequence of sections ui ∈ F(Ui)
for which uj − uk = sjk for all j, k ≤ i as follows. Suppose that the uj have
been constructed for all j < i. Because we started with a cocycle, the sections
uj−sji ∈ F(Uij) glue to an element of F(∪j<iUij). Since F is flasque, this element
extends to an element ui of F(U) doing what we want.

(b) Construct an exact sequence

0→ F → G → H → 0
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with G injective. By a previous exercise,

0→ F(X)→ G(X)→ H(X)→ 0

is exact. Since we also have an exact sequence

H0(X,G)→ H0(X,H)→ H1(X,F)→ H1(X,G)

the map H1(X,F) → H1(X,G) is injective. But H1(X,G) = 0 by the previous
exercise, so H1(X,F) = 0.

This gives the base case of an induction on i. Given the vanishing for i, the long
exact sequence gives us

0 = H i(X,H)→ H i+1(X,F)→ H i+1(X,G) = 0

and so H i+1(X,F) = 0.
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