
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 8

1. (a) Given a morphism X → Spec(R) of locally ringed spaces, pullback of global
sections defines a map R→ O(X). In the other direction, given a homomorphism
R→ O(X), we define a map h : X → Spec(R) of sets by taking x to the inverse
image of mX,x under R → O(X) → OX,x. To check that this map is continuous,
it suffices to check that the inverse image of any distinguished open set Spec(Rf )
is open (since these form a basis for the topology of Spec(R)). This inverse image
consists of the points x ∈ X for which f maps to a unit in OX,x. This set Xf

is open: if f maps to a unit u in OX,x, then the inverse v can be found over
some neighborhood of x, and the difference uv − 1 equals zero over some smaller
neighborhood of x.

To define a morphism of ringed spaces, we must define a morphism OSpec(R) →
h∗OX of sheaves of rings. For f ∈ R, note that the image of f inO(X) is invertible
in O(Xf ): in a neighborhood of each point of Xf there is an inverse of f , and
these inverses must glue. We thus get maps

Rf = OSpec(R)(D(f))→ O(Xf ) = h∗OX(D(f))

and by sheafifying we get the map on sheaves.

Finally, note that this is indeed a map of locally ringed spaces: namely, this is
clear from the pointwise definition. If x ∈ X maps to p ∈ Spec(R), then by
definition p is the inverse image of mX,x under R→ O(X)→ OX,x, so pRp maps
into mX,x and the homomorphism Rp → OX,x is indeed a local homomorphism of
local rings.

(b) It is clear that we have a ringed space. To check that it is locally ringed, note that
for each x ∈ X, if a holomorphic function f on some neighborhood of x is nonzero
at x, then it is nonzero in a neighborhood of x and on any such neighborhood
f−1 is holomorphic. Therefore the kernel of evaluation at x is indeed a maximal
ideal, so OX,x is a local ring.

(c) For i = 0, . . . , n, the subset {[x0 : · · · : xn] ∈ X : xi 6= 0}maps to the distinguished
open affine subspace D(xi) of Pn

C using (a), because polynomial functions on Cn

are holomorphic.

2. (a) If we write the matrices in the form (
a b
c d

)
and identify Z with Spec k[a, b, c, d], then X = Spec k[a, b, c, d, e]/(e(ad− bc)− 1)
because a matrix is invertible if and only if its determinant is invertible.
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(b) The action of GL2(k) on P1
k is by linear fractional transformations:(

a b
c d

)
[t0 : t1] = [at0 + bt1 : ct0 + dt1].

So we get a surjection onto P1
k by looking at the orbit of [1 : 0]:(

a b
c d

)
7→ [a : c].

(c) We have shown previously that H0(P1
k,O) = k, so if P1

k were affine it would be
isomorphic to Spec(k). But of course it isn’t because it contains more than one
point!

3. Let t0, . . . , tn be the homogeneous coordinates on Pn
Z, and let t′0, . . . , tn and t′′0, . . . , t

′′
n

be the homogeneous coordinates on the two factors of Pn
Z×SpecZPn

Z. Then Pn
Z×SpecZPn

Z
is covered by the open affines

D(t′i, t
′′
j ) = D(t′i)×SpecZ D(t′j)

= Spec k[t′k/t
′
i, t
′′
l /t
′′
j : k 6= i, j 6= l].

The image of the diagonal is the closed subspace cut out by (t′j/t
′
i)(t
′′
i /t
′′
j ) − 1 and

t′k/t
′
i − (t′′k/t

′′
j )(t′j/t

′
i) for all k.

4. (a) Property (i): if f−1(Spec(R)) is covered by Spec(S1), . . . , Spec(Sn), then f−1(Spec(Rg))
is covered by Spec(S1,g), . . . , Spec(Sn,g). Property (ii): if f−1(Spec(Rgi)) is cov-
ered by finitely many affines, then they all together cover f−1(Spec(R)).

(b) Property (i): If f−1(Spec(R)) = Spec(S), then f−1(Spec(Rg)) = Spec(Sg). Prop-
erty (ii): if f−1(Spec(Rgi) is affine, then these sets satisfy the criterion from PS 2
problem 1, so f−1(Spec(R)) is affine.

(c) Property (i): If f−1(Spec(R)) is covered by Spec(Si) with Si of finite type, then
f−1(Spec(Rg)) is covered by Spec(Si,g). Property (ii): if f−1(Spec(Rgi) is covered
by some Spec(Si,j) with Si,j a finitely generated ring over Rgi , then Si,j is also a
finitely generated ring over R because Rgi = R[x]/(xgi − 1) is finitely generated!
So just take these together to cover f−1(Spec(R)).

(d) By (c), we may assume X = Spec(R) is affine. Property (i): if S is a finitely
generated R-algebra, then so is Sg. Property (ii): if Sgi are finitely generated Rgi-
algebras, then by clearing denominators we can choose si,j ∈ S which generate
Sgi over R. Let S ′ be the R-subalgebra of S generated by all of the si,j; then the
map S ′ → S of R-modules is surjective on stalks and so must be an isomorphism.

(e) The contradiction is that the infinite disjoint union of Spec(k) does map to Spec
of the infinite direct sum by problem 1(a), but the map is not an isomorphism.
In the case k = F2, this is related to the existence of ultrafilters.
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5. (a) Because of the uniqueness, it is enough to check the case when X = Spec(R) is
affine. In this case, Y = V (I) for some ideal I of R, and we can and must take
Z = Spec(R/

√
I).

(b) Take Y = X in (a).

(c) Because of the uniqueness, we may assume both X = Spec(R) and Y = Spec(S)
are affine. Any nilpotent element of R must map to a nilpotent element of S,
which is zero because Y is reduced. Hence R → S factors uniquely through
R/
√

(0)→ S, as claimed.

(d) To produce gred, apply (c) to factor g◦fY : Yred → X through fX . For functoriality,
compare the squares corresponding to Y → X, Z → Y , and Z → X.

6. Finite implies affine (by a previous homework) and finite type (obvious). Affine implies
separated (proved in class). So we need only check universally closed. Since finite is
stable under base change, we need only check that finite implies closed; that is, we
must check that if S is a finite R-algebra then Spec(S) → Spec(R) is a closed map.
By the previous exercise, we may assume R and S are reduced. Since affine implies
quasicompact, by Lemma 4 from “Projective and proper morphisms” it is enough to
check that the image of Spec(S) is stable under specialization. So pick x, y ∈ Spec(R)
with y a specialization of x and x in the image of Spec(S). To check that y is in
the image of Spec(S), we may replace Spec(R) with the closure of x with the reduced
subscheme structure; now Spec(R) is reduced and irreducible, hence a domain. But
now the going-up theorem implies that Spec(S)→ Spec(R) is surjective.

7. (a) We showed in class that separatedness is stable under base extension. It is obvious
that finite type is stable under the base extension, because the property “S is a
finitely generated R-algebra” is stable under base extension on R. And universal
closedness is by definition stable under base extension.

(b) First recall that the composition of two closed maps X → Y, Y → Z of topological
spaces is again a closed map: the image in Z of a closed subset of X is also the
image of the image in Y .

Let X → Y and Y → Z be separated morphisms. To check that X → Z is
separated, note that X → X ×Z X factors as X → X ×Y X, which is a closed
immersion, followed by X ×Y X = (X ×Z X)×Y×ZY Y → X ×Z X which is the
base extension of the closed immersion Y → Y ×Z Y . So the diagonal is the
composition of two closed maps, so it’s closed. Hence X → Z is separated.

Now suppose X → Z is proper. To check that X → Z is of finite type, just
recall that the property “S is a finitely generated R-algebra” is transitive. To
check that X → Z is universally closed, let U → Z be any morphism. Then
Y ×Z U → U and X ×Z U = X ×Y (Y ×Z U) → Y ×Z U are base extensions of
proper morphisms, so both are closed, and the composition X ×Z U → U is thus
a closed map.
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(c) If X → Z and Y → Z are both separated/proper, then X ×Z Y → Z is the
composition of two separated/proper morphisms X×Z Y → Y (separated/proper
by (b)) and Y → Z. By (c), this composition is separated/proper.

(d) Since Y → Z is separated, Y → Y ×Z Y is a closed immersion, hence sepa-
rated/proper. By identifying X = (X×ZY )×Y×ZY Y , we see that X → X×ZY is
separated/proper. Now X×ZY → Y is the base extension of the separated/proper
morphism X → Z and so is separated/proper, so the composition X → Y is sep-
arated/proper.

8. Put Y = Spec(S). Since f is proper, Y is a finitely generated k-algebra. Choose a
surjection k[x1, . . . , xn] → S; this defines a closed immersion Y → An

k over Spec(k).
Follow this with the projection An

k → A1
k defined by xi, then embed A1

k into P1
k. Since

P1
k → Spec(k) is separated and Y → Spec(k) is proper, by the previous problem

Y → P1
k is proper, so its image is closed. But this image cannot be all of P1

k because
by definition Y factors through A1

k, so it must be a finite set. Since this is true for all
i, the closed immersion Y → An

k must have finite image.

We may thus reduce to the case where Y consists of a single point. If Y is reduced, it
must then be a field which is a finitely generated k-algebra, but by the Nullstellensatz
such a field is itself a finite extension of k. In the general case, if I is the nilradical of
S, then because S is noetherian, some power Im of I must be the zero ideal, and S/I,
I/I2, ..., Im−1/Im are all finite-dimensional over S/I and hence over k. So S has finite
length as a k-module, finishing the proof.
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