
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 9

1. (a) Let k be a field and let U be the complement of the origin in A2
k = Spec k[x, y].

Then
O(U) = k[x, y, y−1] ∩ k[x, x−1, y] = k[x, y]

but the induced map U → Spec k[x, y] is not an isomorphism, so U cannot be
affine. We thus obtain an example of the desired form by glueing two copies of
A2

k together along U .

(b) For any point x ∈ X×SpecZX, let y, z be the images of x under the two projections
to X. By hypothesis, y and z are contained in some open separated subscheme U
of X, so x ∈ U×SpecZU . Therefore X×SpecZX is covered by the open subschemes
U ×SpecZ U , so to check that the image of ∆ : X ×SpecZ X is closed it suffices to
check that its intersection with each U ×SpecZU is closed. But that intersection is
just the image of ∆U : U → U ×SpecZ U , which is closed because U is separated.

(c) To apply (b), it suffices to check that for any two points x, y of Pn
Z, we can find a

homogeneous polynomial f whose zero locus contains neither point, as then the
distinguished open subset D(f) will be affine and hence separated. The easiest
way to do this is to let t0, . . . , tn be homogeneous coordinates of Pn

Z and choose
indices i, j for which ti does not vanish at x (i.e., does not belong to the maximal
ideal of the local ring of Pn

Z at x) and tj does not vanish at y; then one of

ti, tj, ti + tj

must work. (If neither ti nor tj works, then ti must vanish at y so ti + tj does not,
and similarly tj must vanish at x so ti + tj does not.)

2. (a) It is clear that (iv) implies (i) and that (iii) implies (ii); in addition, (i) implies
(iii) because of the definition of ExtiR(M,N) as a derived functor for HomR(•, N).
It thus remains to check that (ii) implies (iv).

Assuming (iv), given a projective resolution of M , for any R-module N , we have

0 = Extm+1
R (M,N) =

ker(HomR(Pm+1, N)→ HomR(Pm+2, N))

im(HomR(Pm, N)→ HomR(Pm+1, N))
.

In particular, for

N =
Pm+1

im(Pm+2 → Pm+1)
=

Pm+1

ker(Pm+1 → Pm)
,

the obvious projection Pm+1 → N lifts to a map Pm → N splitting the inclusion
N → Pm. Consequently, Pm splits as a direct sum of N and

Pm

N
∼=

Pm

im(Pm+1 → Pm)
,

so the latter is a projective R-module. This yields (ii).
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(b) Consider the projective resolution

· · · → R→ R→ R→M → 0

in which the maps R→ R are all multiplication by x. At each step, the quotient
R/ im(R→ R) is R/xR ∼= M , which is not projective because R→M is surjective
but HomR(M,R) → HomR(R,R) ∼= R is not (its image is only xR). Thus
condition (iv) fails for all m.

3. (a) The statement says that any finite module over R = k[x1, . . . , xn] has projective
dimension ≤ n.

(b) By results from class, there exists an exact sequence

Gn+1 → · · · → G1 → F → 0

in which each Gi is a direct sum of various O(d), and in particular is a vector
bundle. Over each distinguished open subset D(xi), we have an equality

coker(Gn+1 → Gn))(D(xi)) = coker(Gn+1(D(xi))→ Gn(D(xi)))

because D(xi) is an affine scheme. But since D(xi) = Spec k[xj/xi : j 6= i], by (a)
the module F(D(xi)) is of projective dimension ≤ n, so the cokernel appearing
above is a projective module over O(D(xi)). We may thus replace Gn by the
cokernel of Gn+1 → Gn to get the desired exact sequence.

4. Put R0 = C[x1, . . . , xn](x1,...,xn); then both R0 and R are noetherian local rings with
the same completion S = CJx1, . . . , xnK. But the completion of a noetherian local ring
is faithfully flat (see Chapter 10 of Atiyah-Macdonald), so S is faithfully flat over both
R0 and R. But this implies that R is faithfully flat over R0.

5. (a) We proceed by induction on i. Assume either that i = 0 or that i > 0 and the
claim is known for i − 1. Let H be a hyperplane; we then have a short exact
sequence

0→ F(d− 1)→ F(d)→ FH(d− 1)→ 0.

By comparing long exact sequences and using the induction hypothesis, we get a
commutative diagram

0 // H i(Pn
C,F(d− 1)) //

��

H i(Pn
C,F(d)) //

��

H i(Pn
C,FH(d− 1))

��

// H i+1(Pn
C,F(d− 1))

0 // H i(X, j∗F(d− 1)) // H i(X, j∗F(d)) // H i(X,FH(d− 1))

with exact rows (note that the case i = 1 is special but still works). In this
diagram, the third vertical arrow is an isomorphism. If the second vertical arrow
is an isomorphism, so is the first; since the isomorphism is known for d = 0 by
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assumption, it follows for all d ≤ 0. On the other hand, if F = O, d > 0, and the
first vertical arrow is an isomorphism, then H i+1(Pn

C,O(d − 1)) = 0 and so the
second vertical arrow is an isomorphism; so if F = O then the isomorphism also
follows for all d > 0.

(b) We proceed by induction on i. Assume either that i = 0 or that i > 0 and the
claim is known for i− 1. Since F is locally free, we can make an exact sequence

0→ F →
⊕
h

O(dh)→ G → 0

for some dh ∈ Z by dualizing the usual construction, and G will also be locally
free. For d large, we may twist and take the long exact sequence to get the
commutative diagram

0 // H i(Pn
C,F(d)) //

��

⊕
hH

i(Pn
C,O(d + dh)) //

��

H i(Pn
C,G(d))

��
0 // H i(X, j∗F(d)) //

⊕
hH

i(X, j∗O(d + dh)) // H i(X, j∗G(d))

with exact rows (note that the case i = 1 is special but still works). Of the first
three vertical arrows, the second is an isomorphism by (i) and (ii) and (a), so the
first is injective, as then is the third by repeating the argument with G in place
of F . By diagram chasing, the first vertical arrow is also surjective, as then is
the third by repeating the argument with G in place of F . Thus the isomorphism
holds for F(d) for d large, and hence for F by (a).

(c) By a previous exercise, there exists an exact sequence

0→ Gm → · · · → G0 → F → 0

in which the Gm are vector bundles. We induct on m. If m = 0, then F is a vector
bundle and (b) applies. Otherwise, take cohomology of 0 → H → G0 → F → 0
and apply the induction hypothesis to H and apply (b) to G0. (Here we need (iii)
to be sure that j∗ preserves the exact sequence.)

6. Strictly speaking, one should do induction over the whole argument; that is, to prove
(a) we assume (c) in dimension one lower.

(a) Let H be a hyperplane through x. By the induction hypothesis, FH(d)x is gen-
erated by finitely many global sections for sufficiently large d. By Nakayama’s
lemma and the overall induction hypothesis, these lift to generators of F(d)x.

(b) By (a), each point x ∈ X has a neighborhood on which F(d) is generated by
finitely many global sections for some large d (and hence for all sufficiently large
d). Since X is compact, we may cover X with finitely many such neighborhoods
and pool the generators to get finitely many generators of all of F .
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(c) By (b), we may write F globally as the cokernel of a map G → H between finite
free OX-modules. We may view G and H as the pullbacks of finite free modules
G0,H0 over OPn

C
; by the previous problem applied to the Hom sheaf, the map itself

also comes from Pn
C. We may then form the cokernel F0, whose pullback coincides

with F (using faithful flatness of the local rings from problem 4).

7. Let H be an analytic hypersurface in X. Then the ideal sheaf on X defining H is
locally the cokernel of a map between finite free OX-modules, so by the second GAGA
exercise it is in fact the pullback of a sheaf on Pn

C. That sheaf in turn defines an
algebraic hypersurface whose analytification is H.
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