Math 203B (Algebraic Geometry), UCSD, winter 2013 Problem Set 9 (due Friday, March 15)

Solve the following problems, and turn in the solutions to four of them.

1. (a) Give an example of a scheme in which the intersection of two open affines fails to be affine.
(b) Let X be a scheme in which any two points of X are contained in some open separated subscheme. Prove that X is separated.
(c) Use (b) to give another proof that $\mathbb{P}_{\mathbb{Z}}^{n}$ is separated for all $n>0$.
2. Let R be a commutative ring and let M be an R-module. A projective resolution of M is an exact sequence

$$
\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of R-modules in which the P_{i} are projective. We say M has projective dimension m if m is the smallest nonnegative integer for which there exists a projective resolution with $P_{i}=0$ for all $i>m$.
(a) Let m be a nonnegative integer. Prove that the following conditions are equivalent.
(i) The R-module M has projective dimension $\leq m$.
(ii) We have $\operatorname{Ext}_{R}^{m+1}(M, N)=0$ for all R-modules M.
(iii) We have $\operatorname{Ext}_{R}^{i}(M, N)=0$ for all R-modules N and all $i \geq m+1$.
(iv) For any projective resolution of M as above,

$$
0 \rightarrow \operatorname{coker}\left(P_{m+1} \rightarrow P_{m}\right) \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is also a projective resolution of M.
Here by $\operatorname{Ext}_{R}^{i}(M, N)$, I mean the right derived functors of the contravariant functor $\operatorname{Hom}_{R}(\bullet, N)$. (They happens to coincide with the right derived functors of the covariant functor $\operatorname{Hom}_{R}(M, \bullet)$ but you shouldn't need to use this.)
(b) Put $R=k[x] /\left(x^{2}\right)$ and $M=R / x R \cong k$. Prove that M does not have finite projective dimension. In particular, finite projective dimension is not guaranteed even if R is noetherian and M is finitely generated.
3. Let k be a field.
(a) Write down the statement of the Hilbert syzygy theorem from Wikipedia. You do not need to include a proof.
(b) Let \mathcal{F} be a quasicoherent finitely generated sheaf on \mathbb{P}_{k}^{n}. Prove that for some m, there exists an exact sequence

$$
0 \rightarrow \mathcal{G}_{m} \rightarrow \cdots \rightarrow \mathcal{G}_{0} \rightarrow \mathcal{F} \rightarrow 0
$$

in which $\mathcal{G}_{0}, \ldots, \mathcal{G}_{m}$ are vector bundles.
4. Let R be the subring of $\mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket$ consisting of those series which converge absolutely on some neighborhood of $(0, \ldots, 0)$. By the Weierstrass preparation theorem, R is noetherian (you need not prove this). Prove that R is faithfully flat over $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)}$. Hint: compare both rings to $\mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
5. In this exercise, we prove part of Serre's famous GAGA theorem. Let \mathcal{F} be a quasicoherent finitely generated sheaf on $\mathbb{P}_{\mathbb{C}}^{n}$. Let X be the analytification of $\mathbb{P}_{\mathbb{C}}^{n}$, and let $j: X \rightarrow \mathbb{P}_{\mathbb{C}}^{n}$ be the natural morphism of locally ringed spaces, as defined on the previous problem set. Assume the following facts from complex analysis.
(i) We have $H^{0}(X, \mathcal{O})=\mathbb{C}$ (by Liouville's theorem).
(ii) We have $H^{i}(X, \mathcal{O})=0$ for all $i>0$ (by Cartan's Theorem B).

Prove that the maps

$$
\begin{equation*}
H^{i}\left(\mathbb{P}_{\mathbb{C}}^{n}, \mathcal{F}\right) \rightarrow H^{i}\left(X, j^{*} \mathcal{F}\right) \tag{1}
\end{equation*}
$$

derived from the universal property of derived functors are isomorphisms for all $i \geq 0$ by induction on n. Specifically, given the result for $n-1$, prove it for n in the following steps.
(a) For any given \mathcal{F}, prove that the isomorphism for \mathcal{F} implies the isomorphism for $\mathcal{F}(-d)$ for all $d \geq 0$, and also for all $d \geq 0$ in in case $\mathcal{F}=\mathcal{O}$.
(b) Prove the isomorphism for \mathcal{F} locally free. Hint: first prove it for $\mathcal{F}(d)$ for d large.
(c) Prove the isomorphism for general \mathcal{F}.
6. In this exercise, we prove another part of Serre's GAGA theorem. Assume the following additional fact from complex analysis. ${ }^{1}$
(iii) Let \mathcal{F} be a sheaf on X which is locally the cokernel of an \mathcal{O}_{X}-linear map between finite free \mathcal{O}_{X}-modules. Then $H^{i}(X, \mathcal{F})$ is finite dimensional over \mathbb{C} (by Cartan's Theorem B).

Now take \mathcal{F} as in (iii) and prove the following.
(a) Prove that for any $x \in X$, for d sufficiently large $\mathcal{F}(d)_{x}$ is generated by finitely many global sections of $\mathcal{F}(d)$. Hint: draw a hyperplane through x and induct on n.
(b) Prove that for d sufficiently large, $\mathcal{F}(d)$ is generated by finitely many global sections. Hint: the space X is compact.
(c) Prove that $\mathcal{F} \cong j^{*} \mathcal{G}$ for some quasicoherent finitely generated sheaf \mathcal{G} on $\mathbb{P}_{\mathbb{C}}^{n}$. Hint: use (b) to write \mathcal{F} as a cokernel between two objects pulled back from $\mathbb{P}_{\mathbb{C}}^{n}$, then use the previous problem to show that the map also comes from $\mathbb{P}_{\mathbb{C}}^{n}$.
7. Using the GAGA exercises, prove that any analytic hypersurface in $\mathbb{P}_{\mathbb{C}}^{n}$ is algebraic.

[^0]
[^0]: ${ }^{1}$ This assumption was missing from the original problem statement.

