Math 203B (Algebraic Geometry), UCSD, winter 2013 Problem Set 9 (due *Friday*, March 15)

Solve the following problems, and turn in the solutions to *four* of them.

- 1. (a) Give an example of a scheme in which the intersection of two open affines fails to be affine.
 - (b) Let X be a scheme in which any two points of X are contained in some open separated subscheme. Prove that X is separated.
 - (c) Use (b) to give another proof that $\mathbb{P}^n_{\mathbb{Z}}$ is separated for all n > 0.
- 2. Let R be a commutative ring and let M be an R-module. A projective resolution of M is an exact sequence

$$\cdots \to P_1 \to P_0 \to M \to 0$$

of *R*-modules in which the P_i are projective. We say *M* has projective dimension *m* if *m* is the smallest nonnegative integer for which there exists a projective resolution with $P_i = 0$ for all i > m.

- (a) Let m be a nonnegative integer. Prove that the following conditions are equivalent.
 - (i) The *R*-module *M* has projective dimension $\leq m$.
 - (ii) We have $\operatorname{Ext}_{R}^{m+1}(M, N) = 0$ for all *R*-modules *M*.
 - (iii) We have $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all *R*-modules *N* and all $i \geq m+1$.
 - (iv) For any projective resolution of M as above,

 $0 \rightarrow \operatorname{coker}(P_{m+1} \rightarrow P_m) \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0$

is also a projective resolution of M.

Here by $\operatorname{Ext}_{R}^{i}(M, N)$, I mean the right derived functors of the contravariant functor $\operatorname{Hom}_{R}(\bullet, N)$. (They happens to coincide with the right derived functors of the covariant functor $\operatorname{Hom}_{R}(M, \bullet)$ but you shouldn't need to use this.)

- (b) Put $R = k[x]/(x^2)$ and $M = R/xR \cong k$. Prove that M does not have finite projective dimension. In particular, finite projective dimension is not guaranteed even if R is noetherian and M is finitely generated.
- 3. Let k be a field.
 - (a) Write down the statement of the *Hilbert syzygy theorem* from Wikipedia. You do not need to include a proof.
 - (b) Let \mathcal{F} be a quasicoherent finitely generated sheaf on \mathbb{P}_k^n . Prove that for some m, there exists an exact sequence

$$0 \to \mathcal{G}_m \to \cdots \to \mathcal{G}_0 \to \mathcal{F} \to 0$$

in which $\mathcal{G}_0, \ldots, \mathcal{G}_m$ are vector bundles.

- 4. Let R be the subring of $\mathbb{C}[\![x_1, \ldots, x_n]\!]$ consisting of those series which converge absolutely on some neighborhood of $(0, \ldots, 0)$. By the Weierstrass preparation theorem, R is noetherian (you need not prove this). Prove that R is faithfully flat over $\mathbb{C}[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}$. Hint: compare both rings to $\mathbb{C}[\![x_1, \ldots, x_n]\!]$.
- 5. In this exercise, we prove part of Serre's famous GAGA theorem. Let \mathcal{F} be a quasicoherent finitely generated sheaf on $\mathbb{P}^n_{\mathbb{C}}$. Let X be the analytification of $\mathbb{P}^n_{\mathbb{C}}$, and let $j : X \to \mathbb{P}^n_{\mathbb{C}}$ be the natural morphism of locally ringed spaces, as defined on the previous problem set. Assume the following facts from complex analysis.
 - (i) We have $H^0(X, \mathcal{O}) = \mathbb{C}$ (by Liouville's theorem).
 - (ii) We have $H^i(X, \mathcal{O}) = 0$ for all i > 0 (by Cartan's Theorem B).

Prove that the maps

$$H^{i}(\mathbb{P}^{n}_{\mathbb{C}},\mathcal{F}) \to H^{i}(X,j^{*}\mathcal{F})$$
 (1)

derived from the universal property of derived functors are isomorphisms for all $i \ge 0$ by induction on n. Specifically, given the result for n-1, prove it for n in the following steps.

- (a) For any given \mathcal{F} , prove that the isomorphism for \mathcal{F} implies the isomorphism for $\mathcal{F}(-d)$ for all $d \ge 0$, and also for all $d \ge 0$ in in case $\mathcal{F} = \mathcal{O}$.
- (b) Prove the isomorphism for \mathcal{F} locally free. Hint: first prove it for $\mathcal{F}(d)$ for d large.
- (c) Prove the isomorphism for general \mathcal{F} .
- 6. In this exercise, we prove another part of Serre's GAGA theorem. Assume the following additional fact from complex analysis.¹
 - (iii) Let \mathcal{F} be a sheaf on X which is locally the cokernel of an \mathcal{O}_X -linear map between finite free \mathcal{O}_X -modules. Then $H^i(X, \mathcal{F})$ is finite dimensional over \mathbb{C} (by Cartan's Theorem B).

Now take \mathcal{F} as in (iii) and prove the following.

- (a) Prove that for any $x \in X$, for d sufficiently large $\mathcal{F}(d)_x$ is generated by finitely many global sections of $\mathcal{F}(d)$. Hint: draw a hyperplane through x and induct on n.
- (b) Prove that for d sufficiently large, $\mathcal{F}(d)$ is generated by finitely many global sections. Hint: the space X is compact.
- (c) Prove that $\mathcal{F} \cong j^*\mathcal{G}$ for some quasicoherent finitely generated sheaf \mathcal{G} on $\mathbb{P}^n_{\mathbb{C}}$. Hint: use (b) to write \mathcal{F} as a cokernel between two objects pulled back from $\mathbb{P}^n_{\mathbb{C}}$, then use the previous problem to show that the map also comes from $\mathbb{P}^n_{\mathbb{C}}$.
- 7. Using the GAGA exercises, prove that any analytic hypersurface in $\mathbb{P}^n_{\mathbb{C}}$ is algebraic.

¹This assumption was missing from the original problem statement.