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Notes on the Riemann-Roch theorem

In these notes, we explain to how use sheaf cohomology to prove the Riemann-Roch the-
orem. Note that we need to be careful not to use Riemann-Roch implicitly in the arguments!
(I believe this proof is due to Weil; my exposition is plagiarized from some notes of Ravi
Vakil.)

First, some notation. Let k be an algebraically closed field. Let X be a smooth projective
curve over k with function field K. The letter D will always denote a divisor on X. Let
ωX be the canonical sheaf. Let g = dimkH

0(X,ωX) be the genus of X, also called the
geometric genus in order to distinguish it from g′ = dimkH

1(X,OX). The latter is called
the arithmetic genus ; at the end the two genera will turn out to be equal, but we cannot use
this fact in the proof!

Lemma 1. The k-vector spaces H0(X,OX(D)) and H1(X,OX(D)) have finite dimension.

Proof. Proved in lecture. See also Hartshorne, Theorem III.5.2.

We will have two different types of Euler characteristic which will ultimately coincide,
but again we will not discover this until later. Define

χa(D) = dimkH
0(X,OX(D))− dimkH

1(X,OX(D))

χg(D) = dimkH
0(X,OX(D))− dimkH

0(X,ωX(−D)).

Using χa, we can already derive the Riemann inequality except with g replaced by g′.

Lemma 2. For all D,
χa(D) = deg(D) + 1− g′.

In particular, dimkH
0(X,OX(D)) ≥ deg(D) + 1− g′.

Proof. Since the equality is obvious if D = 0, it is enough to check that for any closed point
P ∈ X,

χa(D + P )− χa(D) = 1.

To see this, recall that from the short exact sequence

0→ OX(D)→ OX(D + P )→ kP → 0 (1)

we get a long exact sequence

0→ H0(X,OX(D))→ H0(X,OX(D + P ))→ H0(X, kP )→
→ H1(X,OX(D))→ H1(X,OX(D + P ))→ H1(X, kP )→ 0.

Since dimkH
0(X, kP ) = 1 and dimkH

1(X, kP ) = 0, this gives the desired equality.
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For P ∈ X a closed point and s a meromorphic differential on X, the residue of P at
s, denoted ResP (s), is computed by choosing a uniformizer t at P , writing s as a formal
Laurent series

∑∞
i=−m ait

i dt and extracting the coefficient of t−1 dt. It was shown on a
previous homework that this does not depend on the choice of t.

Lemma 3. Let f : X → P1
k be a nonconstant morphism. Let t be a coordinate on P1

k. Choose
g ∈ K and put h = TraceK/k(t) g. Then for each closed point P ∈ P1

k,∑
Q∈f−1(P )

ResQ(g dt) = ResP (h dt).

Proof. Explicit computation. For a more elegant derivation using a more conceptual defini-
tion of the residue, see Tate’s paper “Residues of differentials on curves”.

Lemma 4 (Residue theorem). For s a meromorphic differential on X, the sum of ResP (s)
over all closed points P on X equals 0.

Proof. For X = P1
k, this was proved on a homework. The general case reduces to this case

via Lemma 3.

We now use residues to take a closer look at H1(X,OX(D)) using Weil’s method of
repartitions. Let η be the generic point of X; we can identify η with Spec(K) and then view
the inclusion iη : η → X as a morphism of schemes. The sheaf iη∗Oη on X is quasicoherent
and assigns each nonempty open set to K, so we have a short exact sequence

0→ OX → iη∗Oη →
⊕
P∈X

iP∗(K/OX,P )→ 0

where P runs over closed points and iP : Spec(k)→ X is the map with image P . Tensor with
OX(D), which preserves the exact sequence because OX(D) is locally free. Then identify
(K/OX,P )⊗OX

OX(D) with K/OX(D)P and take the long exact sequence in cohomology:

0→ k → K →
⊕
P∈X

K/OX(D)P → H1(X,O(D))→ 0.

The last zero is H1(X, iη∗Oη ⊗OX
O(D)), which vanishes because the sheaf iη∗Oη ⊗OX

O(D)
has surjective restriction maps (i.e., it is flasque). We conclude that

H1(X,O(D)) ∼= coker

(
K ⊕

⊕
P∈X

OX(D)P →
⊕
P∈X

K

)
, (2)

where K maps diagonally and the sums over P map term-by-term. Similarly,

H1(X,ωX(D)) ∼= coker

(
ωX,η ⊕

⊕
P∈X

ωX,P →
⊕
P∈X

ωX,η

)
(3)
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where ωX,η is the stalk at η, i.e., the space of meromorphic differentials on X. Since ResP
vanishes on ωX,P and Res =

∑
P ResP vanishes on ωX,η by Lemma 4, we get a well-defined

map
Res : H1(X,ωX)→ k.

Using Res, we define a bilinear map

H0(X,ωX(D))×H1(X,OX(−D))→ H1(X,ωX)
Res→ k (4)

and hence a map
H0(X,ωX(D))→ H1(X,OX(−D))∗, (5)

where ∗ denotes the k-linear dual: M∗ = Homk(M,k). The key statement will be the
following lemma.

Lemma 5. The bilinear map (4) is a perfect pairing; that is, the induced map (5) is an
isomorphism. In particular, g = g′ (by taking D = 0).

It is pretty tricky to prove this directly for a single D; instead, we will prove it for all D si-
multaneously! Suppose D′ is another divisor such that D ≤ D′. Then on one hand there is an
obvious inclusion of H0(X,ωX(D)) into H0(X,ωX(D′)). On the other hand, from the inter-
pretation of H1 using (2), there is also an injection H1(X,OX(−D))∗ → H1(X,OX(−D′));
or if you prefer, this is the transpose of a map H1(X,OX(−D))→ H1(X,OX(−D′)), which
one sees is surjective by taking cohomology on the exact sequence

0→ OX(−D)→ OX(−D′)→ F → 0

and noticing that H1(X,F) = 0 because F is concentrated at finitely many points. In any
case, the diagram

H0(X,ωX(D)) //

��

H1(X,OX(−D))∗

��
H0(X,ωX(D′)) // H1(X,OX(−D′))∗

commute, so the maps (5) combine to give a single map⋃
D

H0(X,ωX(D))→
⋃
D

H1(X,OX(−D))∗. (6)

To prove Lemma 5, it is not a priori enough to check that (6) is an isomorphism; one must
also check the following.

Lemma 6. For D ≤ D′, if the image of s ∈ H0(X,ωX(D′)) in H1(X,OX(−D′))∗ belongs
to H1(X,OX(−D))∗, then s ∈ H0(X,ωX(D)).
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Proof. Suppose on the contrary that s /∈ H0(X,ωX(D)). Then there is a closed point P ∈ X
such that ordP ((s) + D) < 0 but ordP ((s) + D′) ≥ 0. In particular, ordP (D′) > ordP (D).
Choose f ∈ K so that ordP ((s) + (f)) = −1; then ordP ((f) − D) = ordP ((f) + (s)) −
ordP ((s) + (D)) > −1, so f ∈ OX(−D)P . Take the class in H1(X,O(−D′)) defined by
the element of

⊕
P∈X K with f at position P and 0 elsewhere; it then maps to zero in

H1(X,O(−D)). But s maps this class to ResP (fs) 6= 0, contradiction.

With this in hand, we are ready to establish duality.

Proof of Lemma 5. We will instead prove that (6) is an isomorphism. This will imply injec-
tivity of (5) directly and surjectivity using Lemma 6.

By writing K =
⋃
E H

0(X,OX(E)), we may view both sides of (6) as K-vector spaces
and the map as a K-linear transformation. The left side is ωX,η, the space of meromor-
phic differentials, which is of dimension 1 over K. Moreover, the map is injective by
Lemma 6: if s ∈ H0(X,ωX(D)) maps to zero in

⋃
DH

1(X,OX(−D))∗, then it must be-
long to H0(X,ωX(D′)) for all D′ ≤ D. That is only possible for s = 0.

So to get surjectivity of (6), it is enough to check that the right side is of dimension at
most 1 over K; that is, any two elements of the right side are linearly dependent. This comes
down to an explicit computation using the Riemann inequality, as follows.

Let c1, c2 be two elements of the target of (6); we may as well take them to be in
H1(X,OX(−D))∗ for the same D. Let E be a divisor of some degree n (to be chosen later).
If c1 and c2 were linearly independent over K, then (f, g) 7→ fc1 + gc2 would define an
injection of H0(X,OX(E))⊕H0(X,OX(E)) into H1(X,OX(−D − E))∗, so

2 dimkH
0(X,O(E)) ≤ dimkH

1(X,OX(−D − E)).

If we take n large enough that n+deg(D) > 0, then H0(X,OX(−D−E)) is forced to vanish,
so by Lemma 2 we have

dimkH
0(X,OX(E)) ≥ n+ 1− g′

dimkH
1(X,OX(−D − E)) = g′ − 1 + n+ deg(D).

Thus g′ − 1 + n+ deg(D) ≥ 2(n+ 1− g′), but is a contradiction for n large enough. Hence
c1 and c2 are linearly dependent over K, completing the proof.

Lemma 5 plus Lemma 2 together give Riemann-Roch in full.

Theorem 7. We have g = g′ and

χg(D) = deg(D) + 1− g′.
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