Math 203B: Algebraic Geometry
 UCSD, winter 2016, Kiran S. Kedlaya Line bundles on curves and the Riemann-Roch theorem

Throughout this lecture, let K be an algebraically closed field and let C be a curve over K, by which I will mean a smooth irreducible projective variety of dimension 1 over K (or rather, the associated scheme).

1 A note on local rings

First off, C has a generic point η, and the local ring $\mathcal{O}_{C, \eta}$ equals the function field $K(C)$. (For instance, if $C=\mathbb{P}_{K}^{1}$ with coordinate x, then $K(C)=K(x)$.)

For each closed point $P \in C$, the local ring $\mathcal{O}_{C, P}$ is a one-dimensional noetherian local ring. Note that the map

$$
\mathfrak{m}_{C, P} / \mathfrak{m}_{C, P}^{2} \cong \Omega_{\mathcal{O}_{C, P} / K} / \mathfrak{m}_{C, P} \Omega_{\mathcal{O}_{C, P} / K}, \quad t \mapsto d t
$$

is an isomorphism of $\kappa(P)$-vector spaces; since by smoothness $\Omega_{\mathcal{O}_{C, P} / K}$ is free of rank one, it follows that $\mathfrak{m}_{C, P} / \mathfrak{m}_{C, P}^{2}$ must be a one-dimensional vector space over $\kappa(P)$. Consequently, if we choose an element $t_{p} \in \mathfrak{m}_{C, P}-\mathfrak{m}_{C, P}^{2}$ (i.e., a uniformizer of $\mathcal{O}_{C, P}$), then $d t_{p}$ is a free generator of $\Omega_{\mathcal{O}_{C, P} / K}$. In fact, $\mathcal{O}_{C, P}$ must be a discrete valuation ring.

2 Divisors and degrees

A divisor on C is a formal \mathbb{Z}-linear combination of closed points. For example, for any nonzero rational function $f \in K(C)$ (where $K(C)$ is the function field of $C, \mathrm{a} / \mathrm{k} / \mathrm{a}$ the local ring $\mathcal{O}_{C, \eta}$ where η is the generic point of C), we define a divisor $(f)=\sum_{P} \operatorname{ord}_{P}(f) \cdot(P)$ where $\operatorname{ord}_{P} f$ is the order of vanishing of f at P. More precisely, if t_{P} is a uniformizer of $\mathcal{O}_{C, P}$, then $\operatorname{ord}_{P}(f)$ is the integer m such that $f t_{P}^{-m}$ is a unit in $\mathcal{O}_{C, P}$.

This concept extends to line bundles. If \mathcal{L} is a line bundle on C, a rational section of \mathcal{L} is an element $s \in \Gamma(U, \mathcal{L})$ for some nonempty open subset U of C. For s a nonzero rational section, we define a divisor $(s)=\sum_{P} \operatorname{ord}_{P}(s) \cdot(P)$ where $\operatorname{ord}_{P}(s)$ is the unique integer m for which $s t_{P}^{-m}$ is a generator of \mathcal{L}_{P}.

The degree of a divisor is the sum of its coefficients. A divisor occurring as (f) for some $f \in K(C)$ is called a principal divisor.
Theorem 1. Every principal divisor has degree 0.
Proof. For $C=\mathbb{P}_{K}^{1}$ this is clear because we can factor any nonzero $f \in K(C)$ as a product of powers of linear polynomials, and the polynomial $x-\alpha$ has divisor $(\alpha)-(\infty)$. The general case reduces to this using the existence of a finite surjective morphism $C \rightarrow \mathbb{P}_{K}^{1}$; see homework.

As a corollary, we see that for s a nonzero rational section of \mathcal{L}, the quantity $\operatorname{deg}(s)$ depends only on \mathcal{L}, so we write it as $\operatorname{deg}(\mathcal{L})$ and call it the degree of \mathcal{L}.

3 Aside: line bundles from divisors

We just used line bundles to make divisors, but one can also go the other way. Given a divisor $D=\sum_{P} D_{P} \cdot(P)$ on C, we can form a line bundle $\mathcal{O}(D)$ whose sections on a nonempty open subset U of C are the rational functions $f \in K(C)$ such that either $f=0$ or $\operatorname{ord}_{P}(f)+D_{P} \geq 0$ for all $P \in U$. Note that the rational section corresponding to $1 \in K(C)$ then has divisor precisely D.

4 Statement of Riemann-Roch

Theorem 2 (Riemann-Roch). For every line bundle \mathcal{L} on C, there is a canonical perfect pairing

$$
H^{0}(C, \mathcal{L}) \times H^{1}\left(C, \Omega \otimes \mathcal{L}^{-1}\right) \rightarrow K
$$

In particular, the two vector spaces have the same dimension.
Note that the case $\mathcal{L}=\mathcal{O}_{C}$ of this statement is already interesting: it says that there is a canonical isomorphism

$$
H^{1}(C, \Omega) \cong K
$$

When $K=\mathbb{C}$, there is a way to prove this using complex analysis: a meromorphic differential on a Riemann surface has a well-defined residue at each point, and the sum of these over all points equals 0 (by the Cauchy integral formula). The map $H^{1}(C, \Omega) \rightarrow K$ is then defined as follows: if we cover C with two open subsets U_{1}, U_{2} and then specify an element of $H^{1}(C, \Omega)$ with a form $\omega \in \Gamma\left(U_{1} \cap U_{2}, \Omega\right)$, we then map it to the sum of its residues.

To extend this proof to general K, note that (by a previous exercise) one can formally define the residue of a meromorphic differential form ω at a point $P \in C$ by choosing a uniformizer t_{P}, writing the completion of the local ring $\mathcal{O}_{C, P}$ as a power series ring $K \llbracket t_{P} \rrbracket$, then expanding ω as a formal series

$$
\omega=\sum_{n=-N}^{\infty} a_{n} t_{P}^{n} d t_{P}
$$

and taking the residue to be a_{-1}. The key point is then to show that the sum of residues of a meromorphic differential always equals 0 . This again can be reduced to the case $C=\mathbb{P}_{K}^{1}$ using a finite morphism. In that case, one can write the differential as $(f(x) / g(x)) d x$ with f and g polynomials; for any fixed degrees of f and g, the vanishing of the sum of differentials is some formal polynomial identity over \mathbb{Z} in the coefficients of f and g. But this identity must hold over \mathbb{C} by the analytic argument from above, so it must in fact be true identically.

