Math 203B: Algebraic Geometry UCSD, winter 2016, Kiran S. Kedlaya Line bundles on curves and the Riemann-Roch theorem

Throughout this lecture, let K be an algebraically closed field and let C be a *curve* over K, by which I will mean a smooth irreducible projective variety of dimension 1 over K (or rather, the associated scheme).

1 A note on local rings

First off, C has a generic point η , and the local ring $\mathcal{O}_{C,\eta}$ equals the function field K(C). (For instance, if $C = \mathbb{P}^1_K$ with coordinate x, then K(C) = K(x).)

For each closed point $P \in C$, the local ring $\mathcal{O}_{C,P}$ is a one-dimensional noetherian local ring. Note that the map

$$\mathfrak{m}_{C,P}/\mathfrak{m}_{C,P}^2 \cong \Omega_{\mathcal{O}_{C,P}/K}/\mathfrak{m}_{C,P}\Omega_{\mathcal{O}_{C,P}/K}, \qquad t \mapsto dt$$

is an isomorphism of $\kappa(P)$ -vector spaces; since by smoothness $\Omega_{\mathcal{O}_{C,P}/K}$ is free of rank one, it follows that $\mathfrak{m}_{C,P}/\mathfrak{m}_{C,P}^2$ must be a one-dimensional vector space over $\kappa(P)$. Consequently, if we choose an element $t_p \in \mathfrak{m}_{C,P} - \mathfrak{m}_{C,P}^2$ (i.e., a *uniformizer* of $\mathcal{O}_{C,P}$), then dt_p is a free generator of $\Omega_{\mathcal{O}_{C,P}/K}$. In fact, $\mathcal{O}_{C,P}$ must be a discrete valuation ring.

2 Divisors and degrees

A divisor on C is a formal Z-linear combination of closed points. For example, for any nonzero rational function $f \in K(C)$ (where K(C) is the function field of C, a/k/a the local ring $\mathcal{O}_{C,\eta}$ where η is the generic point of C), we define a divisor $(f) = \sum_P \operatorname{ord}_P(f) \cdot (P)$ where $\operatorname{ord}_P f$ is the order of vanishing of f at P. More precisely, if t_P is a uniformizer of $\mathcal{O}_{C,P}$, then $\operatorname{ord}_P(f)$ is the integer m such that ft_P^{-m} is a unit in $\mathcal{O}_{C,P}$.

This concept extends to line bundles. If \mathcal{L} is a line bundle on C, a rational section of \mathcal{L} is an element $s \in \Gamma(U, \mathcal{L})$ for some nonempty open subset U of C. For s a nonzero rational section, we define a divisor $(s) = \sum_{P} \operatorname{ord}_{P}(s) \cdot (P)$ where $\operatorname{ord}_{P}(s)$ is the unique integer mfor which st_{P}^{-m} is a generator of \mathcal{L}_{P} .

The degree of a divisor is the sum of its coefficients. A divisor occurring as (f) for some $f \in K(C)$ is called a *principal divisor*.

Theorem 1. Every principal divisor has degree 0.

Proof. For $C = \mathbb{P}^1_K$ this is clear because we can factor any nonzero $f \in K(C)$ as a product of powers of linear polynomials, and the polynomial $x - \alpha$ has divisor $(\alpha) - (\infty)$. The general case reduces to this using the existence of a finite surjective morphism $C \to \mathbb{P}^1_K$; see homework.

As a corollary, we see that for s a nonzero rational section of \mathcal{L} , the quantity deg(s) depends only on \mathcal{L} , so we write it as deg(\mathcal{L}) and call it the *degree* of \mathcal{L} .

3 Aside: line bundles from divisors

We just used line bundles to make divisors, but one can also go the other way. Given a divisor $D = \sum_P D_P \cdot (P)$ on C, we can form a line bundle $\mathcal{O}(D)$ whose sections on a nonempty open subset U of C are the rational functions $f \in K(C)$ such that either f = 0 or $\operatorname{ord}_P(f) + D_P \ge 0$ for all $P \in U$. Note that the rational section corresponding to $1 \in K(C)$ then has divisor precisely D.

4 Statement of Riemann-Roch

Theorem 2 (Riemann-Roch). For every line bundle \mathcal{L} on C, there is a canonical perfect pairing

$$H^0(C,\mathcal{L}) \times H^1(C,\Omega \otimes \mathcal{L}^{-1}) \to K.$$

In particular, the two vector spaces have the same dimension.

Note that the case $\mathcal{L} = \mathcal{O}_C$ of this statement is already interesting: it says that there is a canonical isomorphism

$$H^1(C,\Omega) \cong K.$$

When $K = \mathbb{C}$, there is a way to prove this using complex analysis: a meromorphic differential on a Riemann surface has a well-defined *residue* at each point, and the sum of these over all points equals 0 (by the Cauchy integral formula). The map $H^1(C, \Omega) \to K$ is then defined as follows: if we cover C with two open subsets U_1, U_2 and then specify an element of $H^1(C, \Omega)$ with a form $\omega \in \Gamma(U_1 \cap U_2, \Omega)$, we then map it to the sum of its residues.

To extend this proof to general K, note that (by a previous exercise) one can formally define the *residue* of a meromorphic differential form ω at a point $P \in C$ by choosing a uniformizer t_P , writing the completion of the local ring $\mathcal{O}_{C,P}$ as a power series ring $K[t_P]$, then expanding ω as a formal series

$$\omega = \sum_{n=-N}^{\infty} a_n t_P^n dt_P$$

and taking the residue to be a_{-1} . The key point is then to show that the sum of residues of a meromorphic differential always equals 0. This again can be reduced to the case $C = \mathbb{P}^1_K$ using a finite morphism. In that case, one can write the differential as (f(x)/g(x)) dx with fand g polynomials; for any fixed degrees of f and g, the vanishing of the sum of differentials is some formal polynomial identity over \mathbb{Z} in the coefficients of f and g. But this identity must hold over \mathbb{C} by the analytic argument from above, so it must in fact be true identically.