Math 203B: Algebraic Geometry UCSD, winter 2016, Kiran S. Kedlaya Curves of low genus

With the Riemann-Roch theorem in hand, we study some constructions leading to curves of particular genera. Again, let k be an algebraically closed field.

1 Hyperelliptic curves

A hyperelliptic curve is a curve C admitting a finite morphism $f: C \rightarrow \mathbb{P}_{k}^{1}$ of degree 2. For example, every affine curve of the form $y^{2}=P(x)$ in \mathbb{A}_{k}^{2} extends to a hyperelliptic curve, with x defining the map to \mathbb{P}_{K}^{1}. It will follow from the Riemann-Hurwitz formula (see below) that if $\operatorname{deg} P=d$, then the genus of C equals $\left\lceil\frac{d}{2}-1\right\rceil$; in particular, this proves that the genus of a curve can take any nonnegative integer value.

For example, if $\operatorname{deg} P=1$ one obviously gets \mathbb{P}_{k}^{1} by eliminating x; if $\operatorname{deg} P=2$ one has a conic section; if $\operatorname{deg} P=3$ one gets a smooth cubic curve in \mathbb{P}_{k}^{2}. For $\operatorname{deg} P>3$, this affine curve does not extend smoothly in \mathbb{P}_{k}^{2}, so the genus formula for smooth plane curves does not apply!

2 Riemann-Hurwitz formula

Theorem 1. Let $f: C_{1} \rightarrow C_{2}$ be a finite morphism of degree n. (In positive characteristic, we have to assume that f is separable, i.e., that $k\left(C_{1}\right) / k\left(C_{2}\right)$ is not only finite but also separable as a field extension.) Then

$$
2 g\left(C_{1}\right)-2=n\left(2 g\left(C_{2}\right)-2\right)+\operatorname{deg} R
$$

where R is a divisor associated to $\left(f^{*} \Omega_{C_{2} / k}\right)^{\vee} \otimes \Omega_{C_{1} / k}$.
More precisely, we have an exact sequence

$$
0 \rightarrow f^{*} \Omega_{C_{2} / k} \rightarrow \Omega_{C_{1} / k} \rightarrow \mathcal{F} \rightarrow 0
$$

where \mathcal{F} is a sheaf supported at finitely many points; we may canonically (i.e., not just up to equivalence) take R to be the ramification divisor, i.e., the divisor consisting of the points of the support of \mathcal{F}, each point P occurring with multiplicity equal to the length of \mathcal{F}_{P} as a module over $\mathcal{O}_{C, P}$. (Note: the formula now proves itself!)

For example, if $f: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$ is the map $x \mapsto z=x^{2}, P \in C_{1}$ is the point $x=0$, and $Q \in C_{1}$ is the point $z=0$, then $\Omega_{C_{1} / k, Q}$ is generated by $d z$, which pulls back to $d\left(x^{2}\right)=2 x d x$. If k is not of characteristic 2 , then this means that R contains P with multiplicity 1 ; similarly, the point $P^{\prime} \in C_{1}$ where $x=\infty$ is also contained in R with multiplicity 1 . With this, the arithmetic works out:

$$
2 g\left(C_{1}\right)-2=-2=2(-2)+2=n\left(2 g\left(C_{2}\right)-2\right)+\operatorname{deg} R .
$$

3 Characteristic zero versus characteristic p

In characteristic zero, it is very easy to compute the divisor R. Namely, if $P \in C_{1}$ mapsto $Q \in C_{2}$, a uniformizer $t_{Q} \in \mathcal{O}_{C_{2}, Q}$ pulls back to an element of the form $t_{P}^{m} u$ for $t_{P} \in \mathcal{O}_{C_{1}, P}$ a uniformizer, m a positive integer, and $u \in \mathcal{O}_{C_{1}, P}$ a unit. We then have

$$
f^{*}\left(d t_{Q}\right)=\left(m t_{P}^{m-1} u d t_{P}+t_{p}^{m} \frac{d u}{d t_{P}}\right) d t_{P}
$$

Since $m \neq 0$ in k, R has multiplicity $m-1$ at P.
Another way to interpret this is that R consists of the "missing preimages": most points of C_{2} have exactly n distinct preimages in C_{1}, but a few fall short, and

$$
\operatorname{deg}(R)=\sum_{Q \in C_{2}}\left(n-\# f^{-1}(Q)\right) .
$$

This can also be used to give a topological proof of Riemann-Hurwitz over \mathbb{C} : If U is the complement in C_{2} of the image of the support of R, then $f^{-1}(U) \rightarrow U$ is everywhere n-to- 1 , so we have an equality of topological Euler characteristics:

$$
\chi\left(f^{-1}(U)\right)=n \chi(U) .
$$

Since Euler characteristics are additive over writing a topological space as a union of an open subspace and its complement, and a point has Euler characteristic 1, this yields the proof. (Another way to interpret this is as a proof that the genus in Riemann-Roch coincides with the topological genus: we know this for $\mathbb{P}_{\mathbb{C}}^{1}$, and this derivation implies that both genera transform the same way under finite morphisms.)

This still works in characteristic p if none of the integers m is divisible by p; in this case we say f is tamely ramified (e.g., the squaring map example when $p \neq 2$). If this fails (and f is separable), we say f is wildly ramified; these often arise from Artin-Schreier field extensions (see homework).

4 Linear systems

If \mathcal{L} is a line bundle on C and V is a subspace of $H^{0}(C, \mathcal{L})$ of dimension n, we've seen in a previous homework that we can attempt to define a map $C \rightarrow \mathbb{P}_{k}^{n-1}$ using the sections of V; this works provided that the divisors of the nonzero elements of V have no common point. (Classical terminology: the projectivization of V, or the corresponding collections of divisors, is called a linear system on C. A common point in the divisors is called a base point or basepoint. If there are no base points, we say V is basepoint-free.)

So let's try this using the canonical sheaf Ω, taking V to be the whole space of sections (which has dimension g). If $g=0$, then $V=0$ and this completely fails. If $g=1$, then V is a one-dimensional space; it is basepoint-free since any section has degree $2 g-2=0$, but we just get a map to a point.

This gets more interesting once g gets up to 2 . In this case, V is a two-dimensional space, so we potentially are getting a map $C \rightarrow \mathbb{P}_{k}^{1}$, at least provided that there is no basepoint. (In fact, the canonical linear system is always basepoint-free for $g \geq 2$; see homework.) The degree of this map can be interpreted as the degree of any nonzero divisor in the linear system, which in this case is $2 g-2=2$. So in fact, the one construction we know of curves of genus 2 , namely as hyperelliptic curves, is in fact the only way that they can occur!

