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Curves of low genus

With the Riemann-Roch theorem in hand, we study some constructions leading to curves
of particular genera. Again, let k be an algebraically closed field.

1 Hyperelliptic curves

A hyperelliptic curve is a curve C admitting a finite morphism f : C → P1
k of degree 2. For

example, every affine curve of the form y2 = P (x) in A2
k extends to a hyperelliptic curve,

with x defining the map to P1
K . It will follow from the Riemann-Hurwitz formula (see below)

that if degP = d, then the genus of C equals
⌈
d
2
− 1
⌉
; in particular, this proves that the

genus of a curve can take any nonnegative integer value.
For example, if degP = 1 one obviously gets P1

k by eliminating x; if degP = 2 one has
a conic section; if degP = 3 one gets a smooth cubic curve in P2

k. For degP > 3, this affine
curve does not extend smoothly in P2

k, so the genus formula for smooth plane curves does
not apply!

2 Riemann-Hurwitz formula

Theorem 1. Let f : C1 → C2 be a finite morphism of degree n. (In positive characteristic,
we have to assume that f is separable, i.e., that k(C1)/k(C2) is not only finite but also
separable as a field extension.) Then

2g(C1)− 2 = n(2g(C2)− 2) + degR

where R is a divisor associated to (f ∗ΩC2/k)∨ ⊗ ΩC1/k.

More precisely, we have an exact sequence

0→ f ∗ΩC2/k → ΩC1/k → F → 0

where F is a sheaf supported at finitely many points; we may canonically (i.e., not just up
to equivalence) take R to be the ramification divisor, i.e., the divisor consisting of the points
of the support of F , each point P occurring with multiplicity equal to the length of FP as
a module over OC,P . (Note: the formula now proves itself!)

For example, if f : P1
k → P1

k is the map x 7→ z = x2, P ∈ C1 is the point x = 0, and
Q ∈ C1 is the point z = 0, then ΩC1/k,Q is generated by dz, which pulls back to d(x2) = 2xdx.
If k is not of characteristic 2, then this means that R contains P with multiplicity 1; similarly,
the point P ′ ∈ C1 where x = ∞ is also contained in R with multiplicity 1. With this, the
arithmetic works out:

2g(C1)− 2 = −2 = 2(−2) + 2 = n(2g(C2)− 2) + degR.
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3 Characteristic zero versus characteristic p

In characteristic zero, it is very easy to compute the divisor R. Namely, if P ∈ C1 mapsto
Q ∈ C2, a uniformizer tQ ∈ OC2,Q pulls back to an element of the form tmP u for tP ∈ OC1,P a
uniformizer, m a positive integer, and u ∈ OC1,P a unit. We then have

f ∗(dtQ) =

(
mtm−1P udtP + tmp

du

dtP

)
dtP .

Since m 6= 0 in k, R has multiplicity m− 1 at P .
Another way to interpret this is that R consists of the “missing preimages”: most points

of C2 have exactly n distinct preimages in C1, but a few fall short, and

deg(R) =
∑
Q∈C2

(n−#f−1(Q)).

This can also be used to give a topological proof of Riemann-Hurwitz over C: If U is the
complement in C2 of the image of the support of R, then f−1(U)→ U is everywhere n-to-1,
so we have an equality of topological Euler characteristics:

χ(f−1(U)) = nχ(U).

Since Euler characteristics are additive over writing a topological space as a union of an open
subspace and its complement, and a point has Euler characteristic 1, this yields the proof.
(Another way to interpret this is as a proof that the genus in Riemann-Roch coincides with
the topological genus: we know this for P1

C, and this derivation implies that both genera
transform the same way under finite morphisms.)

This still works in characteristic p if none of the integers m is divisible by p; in this
case we say f is tamely ramified (e.g., the squaring map example when p 6= 2). If this fails
(and f is separable), we say f is wildly ramified ; these often arise from Artin-Schreier field
extensions (see homework).

4 Linear systems

If L is a line bundle on C and V is a subspace of H0(C,L) of dimension n, we’ve seen in
a previous homework that we can attempt to define a map C → Pn−1

k using the sections
of V ; this works provided that the divisors of the nonzero elements of V have no common
point. (Classical terminology: the projectivization of V , or the corresponding collections of
divisors, is called a linear system on C. A common point in the divisors is called a base point
or basepoint. If there are no base points, we say V is basepoint-free.)

So let’s try this using the canonical sheaf Ω, taking V to be the whole space of sections
(which has dimension g). If g = 0, then V = 0 and this completely fails. If g = 1, then V is
a one-dimensional space; it is basepoint-free since any section has degree 2g− 2 = 0, but we
just get a map to a point.
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This gets more interesting once g gets up to 2. In this case, V is a two-dimensional space,
so we potentially are getting a map C → P1

k, at least provided that there is no basepoint.
(In fact, the canonical linear system is always basepoint-free for g ≥ 2; see homework.) The
degree of this map can be interpreted as the degree of any nonzero divisor in the linear
system, which in this case is 2g − 2 = 2. So in fact, the one construction we know of curves
of genus 2, namely as hyperelliptic curves, is in fact the only way that they can occur!
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