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Modules over schemes

So far, we have attached geometric objects to rings, but not to modules over rings. We
remedy that now.

1 Sheaves of modules

Let (X,OX) be a ringed space. A (pre)sheaf of modules on X is a (pre)sheaf of abelian
groups F on X plus a morphism µ : OX × F → F of sheaves of abelian groups, such that
for each open subset U , the map O(U) × F(U) → F(U) provides F(U) with the structure
of a O(U)-module. (For example, µ has to be associative.) A morphism of (pre)sheaves of
modules is defined similarly.

For example, if X = Spec(R) is an affine scheme and M is an R-module, we may define
a sheaf M̃ associated to M by analogy with the definition of the structure sheaf: namely,
let M̃(U) be the functions s : U → tp∈UMp with s(p) ∈ Mp which are locally defined by
elements; that is, U is covered by distinguished open subsets D(f) on which we can find
elements mf ∈Mf such that for all p ∈ D(f), s(p) is the image of mf in Mp. Note that the
stalk M̃p equals the localization Mp.

Theorem 1 (Second fundamental theorem of schemes). For every distinguished open subset
D(f) of X, we have M̃(D(f)) = Mf .

Proof. This again reduces to the case f = 1, and then the argument is exactly analogous to
the case of the structure sheaf.

Note that for M,N ∈ ModR, any morphism M̃ → Ñ of sheaves on Spec(R) now gives
rise to a morphism M → N of modules by taking global sections, and in fact must be the
morphism of sheaves arising from that morphism of modules (since every element of M̃ can
locally be written as m/f for some m ∈M, f ∈ R, and we know where these have to map).
That is, we now have a fully faithful functor from ModR to sheaves of modules on Spec(R).

2 Quasicoherent sheaves

However, that functor is not essentially surjective; that is, not every sheaf of modules on
Spec(R) arises from an R-module. For example, if R is a discrete valuation ring with fraction
field K, then there is a sheaf of modules F on Spec(R) = {0, p} such that

F(∅) = 0, F({0}) = K, F(Spec(R)) = 0

which does not arise from any R-module.
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On the other hand, it is at least clear that every morphism M̃ → F is uniquely determined
by the map on global sections (again because elements of M̃ are locally m/f). That is, the
functor M 7→ M̃ is left adjoint to the global sections functor on sheaves of modules.

For (X,OX) a scheme, we define a quasicoherent sheaf of modules on X to be a sheaf
of modules F with the property that for some covering of X by distinguished open affine
subspaces U = Spec(R), each restriction F|U is isomorphic to M̃ for some M ∈ ModR;

that M has to be F(U), so this happens if and only if the adjunction map F̃(U) → F is
an isomorphism. Note that the restriction of a quasicoherent sheaf to an open subspace is
again a quasicoherent sheaf.

The obvious difficulty here is that for X = Spec(R), we may have just defined a larger
class of sheaves than the ones coming from modules, since the condition here only applies
over some unspecified covering of X.

Theorem 2 (Third fundamental theorem of schemes). For X = Spec(R), the functor M 7→
M̃ is an equivalence of categories between ModR and the category of quasicoherent sheaves
on Spec(R).

Note that the only missing content in this statement is that if F is a quasicoherent sheaf,

then F̃(X)→ F is an isomorphism. That is, if we put M = F(X), then for each p ∈ Spec(R)
the map Mp → Fp should be an isomorphism. (Compare Hartshorne, Lemma II.5.3.)

We first check that the map is injective. By definition, we can cover X with finitely many
distinguished opens Ui = D(fi) : i = 1, . . . , n such that for Mi = F(Ui), the map M̃i → F|Ui

is an isomorphism. Suppose m ∈ M maps to zero in Fp; it then maps to zero in F(D(f))
for some f ∈ R− p. Then for each i, m maps to zero in F(Ui ∩D(f)) = (Mi)f , so in Mi it
is killed by fn for some nonnegative integer n. By taking the maximum of n over i, we get a
single n such that fnm maps to zero in Mi; that is, fm is zero as a section of F , and hence
as an element of M . Thus m maps to zero in Mp.

We next check that the map is surjective. It suffices to check that for any f ∈ R−p, any
section s ∈ F(D(f)) lifts to Mf . For each i, s lifts to mi/f

ni ∈ (Mi)f ; we can again take the
ni equal to a single largest value n, but then the differences mi −mj need not die in Mij.
However, they do get killed by some power of f , so by increasing n suitably we can ensure
that the mi do in fact form an element of

ker

(∏
i

Mi →
∏
i,j

Mij

)
= M.

We thus get m ∈M such that m/fn gives rise to s.
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