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Sections of quasicoherent sheaves

We continue with the discussion of quasicoherent sheaves, and in particular to what
extent they are generated by global sections.

1 Surjections of quasicoherent sheaves

First, a quick definition from homological algebra. A sequence of maps

A→ B → C

between abelian groups is exact if the following conditions hold.

• The composition A → B → C equals zero. (This means that the sequence is a
complex.)

• The induced inclusion
image(A→ B)→ ker(B → C)

is in fact an isomorphism.

For sequences longer than three terms, we impose the same condition on every three consec-
utive terms. For instance, a short exact sequence

0→ A→ B → C → 0

means that A is isomorphic to a subgroup of B, the quotient by which is isomorphic to C.
For any category admitting a faithful forgetful functor to abelian groups (e.g., ModR for
some ring R), we make these definitions on the level of underlying abelian groups.

Note that the first condition is preserved by applying any functor, but the second con-
dition is not. A functor that preserves the second condition is said to be exact ; it is easy
shown that this happens if and only if the functor preserves short exact sequences. For
example, if R → S is a flat ring homomorphism (e.g., a localization), then the functor
• ⊗R S : ModR →ModS is exact.

It is more common to have only a one-sided version of the exact condition. For example,
a functor which preserves exactness of sequences of the form

0→ A→ B → C

is said to be left exact (and similarly for right exact).
We say that a sequence of maps of sheaves is exact if for each point, the associated

sequence of stalks is exact. It is not hard to see that the global sections functor is left
exact, using the fact that F(X) → tx∈XFx is injective. However, it is not in general right
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exact; in particular, surjectivity of a morphism of sheaves is not in general characterized by
surjectivity of maps of global sections.

So in general, if
0→ E → F → G → 0

is an exact sequence of sheaves, we only get an exact sequence

0→ E(X)→ F(X)→ G(X)→???

and we can ask whether there is a way to “fill in” the gap on the right. We will use sheaf
cohomology to answer this question later; for the moment, let me prove a result that rules
out this pathology in particular case of present interest, and also gives the flavor of what we
will want to do more generally.

Theorem 1. Let X = SpecR be an affine scheme. Then the functor F 7→ F(X) from
quasicoherent sheaves on X to ModR is exact.

Proof. Let
0→ E → F → G → 0

be a short exact sequence. Taking global sections yields a sequence

0→M → N → P

of R-modules, and we wish to check that N → P is surjective. Since localization morphisms
of rings are flat, if we write P ′ = coker(M → N) and let G ′ be the associated sheaf, then

0→ E → F → G ′ → 0

is exact. But then G ∼= G ′, so P = G(X) = G ′(X) = P ′ and we win.

In the previous proof, I didn’t really need to know that G is quasicoherent, but I did need
this about E and F . However, one can do a bit better.

Theorem 2. Let X = SpecR be an affine scheme. Let

0→ E → F → G → 0

be an exact sequence of sheaves in which E is quasicoherent. Then

0→ E(X)→ F(X)→ G(X)→ 0

is exact.

Proof. Again, let
0→M → N → P

be the sequence obtained by taking global sections. What we know is that given an element
p ∈ P , there exist elements f1, . . . , fk ∈ R generating the unit ideal and lifts ni ∈ Nfi lifting
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p; however, the elements ni, nj need not coincide in Nfifj . On the other hand, they do both
map to p in Pfifj , so the difference ni − nj lifts uniquely from Nfifj to Mfifj . (Note that we
are using freely the fact that localization is an exact functor.)

At this point, it would be enough to produce elements mi ∈ Mfi such that mi −mj =
ni − nj: namely, we could then replace the lifts ni with ni −mi to get new lifts of p (they
are still lifts because M → N → P is exact) which do in fact glue on overlaps.

On HW2, we’ve seen that the sequence∏
i

Mfi →
∏
i,j

Mfifj →
∏
i,j,k

Mfifjfk

is exact, where the first map is the usual (mi) 7→ (mi−mj) and the second map is (mi,j) 7→
(mj,k − mi,k + mi,j). (If you didn’t read the solution, localize at an arbitrary prime ideal
and sort things out by hand.) The middle term in this sequence contains (ni − nj)i,j which
maps to zero (because M∗ injects into N∗), so it arises from something on the left. But this
is exactly what we needed!

2 Quasicoherent sheaves on projective spaces

Let’s now look at the projective space X = Pn
R for some ring R. We have seen that O(k)

has “many global sections” if k > 0, but not if k ≤ 0. Here is a much stronger form of that
statement.

For F a quasicoherent sheaf on Pn
R, define F(n) = F ⊗O O(n); this operation is called

twisting by O(n). It can be undone by twisting by O(−n).

Theorem 3 (Serre). Let R be a ring. Let F be a quasicoherent sheaf on Pd
R for some d ≥ 0

which is locally finitely generated (i.e., coherent under the definition of Hartshorne). Then
there exists n0 ∈ Z such that for each n ≥ n0, F(n) is generated by finitely many global
sections (i.e., there exists a surjective morphism O⊕c → F(n) of quasicoherent sheaves for
some c depending on n).

Proof. For i = 0, . . . , d, Mi = F(D+(xi)) is a finitely generated module over R[x0/xi, . . . , xd/xi].
Choose a finite set of module generators of Mi. It would be enough to show that for each
generator s in this set, we can find an integer n such that xn

i s, viewed as a section of F(n)
over D+(xi), extends to a section of F(n) over all of Pd

R; namely, the same would be true for
any larger n, so for some suitably large n we can represent generators of F(n)(D+(xi)) for
all i using global sections.

To begin with, for each j, we may restrict s to F(D+(xixj)) = (Mi)xj/xi
= (Mj)xi/xj

. For
suitably large n, xn

i s lifts from xn
i (Mj)xi/xj

to some element sj ∈ xn
i Mj.

However, these lifts may not agree on overlaps. No problem: sj− sk ∈ F(D+(xjxk) must
be killed by some power of xi/xj = (xi/xj)(xj/xk) (the latter factor being a unit), so by
raising n suitably I can force the difference to become zero.
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This result also promotes formally to closed subschemes of projective space. To see why,
note that for any closed immersion j : Y → X of schemes, if F is a quasicoherent sheaf on
Y , then f∗F is a quasicoherent sheaf on X: locally we have a surjective map R → R/I of
rings and an R/I-module M , and we are simply viewing M as an R-module. Moreover, if
F is locally finitely generated, then so is j∗F .

Consequently, if j : X → Pd
R is a closed immersion and F is a quasicoherent locally

finitely generated sheaf on X, if we define F(n) = F ⊗O j∗O(n), then there exists n0 ∈ Z
such that for each n ≥ n0, F(n) is generated by finitely many global sections.

3 Preview

Here is a related result, but we are not ready to finish its proof just yet.

Theorem 4. Assume that the ring R is noetherian. Let j : X → Pd
R be a closed immersion.

Let
0→ E → F → G → 0

be a short exact sequence of coherent sheaves on X. Then there exists n0 ∈ Z such that for
each n ≥ n0, the sequence

0→ E(n)(X)→ F(n)(X)→ G(n)(X)→ 0

is again exact.

Partial proof. We may again reduce to the case X = Pd
R; only the surjectivity of F(n)(X)→

G(n)(X) is at issue. Again, any global section can be lifted on D+(xi) for each i, and the
differences lift uniquely from F(n)(D+(xixj)) to G(n)(D+(xixj)). So it would be enough to
know that ∏

i

E(n)(D+(xi))→
∏
i,j

E(n)(D+(xixj))→
∏
i,j,k

E(n)(D+(xixjxk))

is exact for n large.

To fill in the rest of this proof, we will need to describe sheaf cohomology. More on that
shortly!
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