Math 203B (Algebraic Geometry), UCSD, winter 2016 Solutions for problem set 2

1. (a) Let $\underline{\mathcal{B}}$ be the subcategory of \underline{X} consisting of the open sets in $\underline{\mathcal{B}}$ (so again morphisms are inclusions). Then the category of sheaves (say of sets) on X is equivalent to the category of contravariant functors $F: \mathcal{B} \rightarrow$ Set such that for any $U \in \mathcal{B}$ and any covering of U by subsets $U_{i} \in \mathcal{B}$ (indexed by any set I), $F(U)$ maps bijectively to the set of $\left(s_{i}\right) \in \prod_{i \in I} F\left(U_{i}\right)$ such that for all $i, j \in i, s_{i}$ and s_{j} have the same image in $F\left(U_{i} \cap U_{j}\right)$.
(b) For F a sheaf specified on \mathcal{B} and $x \in X$, we define the stalk F_{x} again as the direct limit of $\mathcal{F}(U)$ as U runs over elements of \mathcal{B} containing x. Let F^{\prime} be the sheaf such that $F^{\prime}(U)$ consists of the maps $s: U \rightarrow \sqcup_{x \in X} F_{x}$ such that $s(x) \in F_{x}$ for all $x \in U$, and for some covering $\left\{U_{i}\right\}$ of U by elements of $\mathcal{B},\left.s\right|_{U_{i}}$ is induced by an element of $F\left(U_{i}\right)$. Then the map $F_{x} \rightarrow F_{x}^{\prime}$ is an isomorphism for each x, because elements of \mathcal{B} containing x are cofinal among all open neighborhoods, so the direct limit can be computed just using them. It follows that the functor $F \mapsto F^{\prime}$ provides a quasi-inverse to the restriction functor from sheaves to sheaves specified on \mathcal{B}.
2. Cover the Riemann sphere S with the two open subsets $U_{1}=S-\{0\}$ and $U_{2}=S-\{\infty\}$. Put $V_{1}=\operatorname{Spec} \mathbb{C}[z]$ and $V_{2}=\operatorname{Spec} \mathbb{C}\left[z^{-1}\right]$; using a theorem from lecture, the maps $\mathbb{C}[z] \rightarrow \mathcal{O}\left(U_{1}\right), \mathbb{C}[z] \rightarrow \mathcal{O}\left(U_{2}\right)$ define morphisms $U_{1} \rightarrow V_{1}, U_{2} \rightarrow V_{2}$ which overlap in a morphism $U_{1} \cap U_{2} \rightarrow V_{1} \cap V_{2}$. They thus define a morphism $S \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ of locally ringed spaces which by the Nullstellensatz is a bijection (but not a homeomorphism) of S with the closed points of $\mathbb{P}_{\mathbb{C}}^{1}$.
3. (a) The map $A_{i} \rightarrow A_{i}\left[f_{j}^{-1}\right]$ defines a map $\operatorname{Spec}\left(A_{i}\left[f_{j}^{-1}\right]\right) \rightarrow \operatorname{Spec}\left(A_{i}\right)=X_{i}$. The image of this map contains only primes not containing f_{j}, so lies in $X_{i} \cap X_{j}$. The $\operatorname{map} \operatorname{Spec}\left(A_{i}\left[f_{j}^{-1}\right]\right) \rightarrow X_{i} \cap X_{j}$ is a homeomorphism: its inverse is the continuous map $\mathfrak{p} \mapsto \mathfrak{p}\left[f_{j}^{-1}\right]$.
(b) To simplify notation, we only check that $A_{f_{1}} \rightarrow A_{1}$ is an isomorphism. As directed, we start with the exact sequence

$$
0 \rightarrow A \rightarrow \prod_{i=1}^{n} A_{i} \rightarrow \prod_{i, j=1}^{n} A_{i j}
$$

for $A_{i j}=\mathcal{O}_{X}\left(X_{i} \cap X_{j}\right)$. Inverting f_{1} preserves exactness, so we have another exact sequence

$$
0 \rightarrow A_{f_{1}} \rightarrow \prod_{i=1}^{n} A_{i, f_{1}} \rightarrow \prod_{i, j=1}^{n} A_{i j, f_{1}} .
$$

Using (a), we may rewrite this as

$$
0 \rightarrow A_{f_{1}} \rightarrow \prod_{i=1}^{n} \mathcal{O}_{X}\left(X_{1} \cap X_{i}\right) \rightarrow \prod_{i, j=1}^{n} \mathcal{O}_{X}\left(X_{1} \cap X_{i} \cap X_{j}\right)
$$

from which it follows that $A_{f_{1}} \cong \mathcal{O}_{X}\left(X_{1}\right)=A_{1}$.
(c) Using (b), we get a ring map $A \rightarrow A_{f_{i}} \cong A_{i}$ and hence a morphism $X_{i} \cong$ $\operatorname{Spec}\left(A_{f_{i}}\right) \rightarrow \operatorname{Spec}(A)$ of schemes. These maps agree on overlaps, so they define a morphism $X \rightarrow \operatorname{Spec}(A)$ of schemes. To see that this is an isomorphism, it suffices to check locally on A. But f_{1}, \ldots, f_{n} generate the unit ideal in A, so the distinguished opens $D\left(f_{i}\right)$ form a cover, and the restriction to $D\left(f_{i}\right)$ is the isomorphism $X_{i} \cong \operatorname{Spec}\left(A_{i}\right)$.
4. The last map in the sequence

$$
0 \rightarrow M \rightarrow \prod_{i=1}^{n} M_{f_{i}} \rightarrow \prod_{i, j=1}^{n} M_{f_{i} f_{j}}
$$

was defined to take $\left(s_{i}\right)_{i=1}^{n}$ to $\left(s_{i}-s_{j}\right)_{i, j=1}^{n}$ (where the restriction maps have been left implicit). The last map in the extended sequence

$$
0 \rightarrow M \rightarrow \prod_{i=1}^{n} M_{f_{i}} \rightarrow \prod_{i, j=1}^{n} M_{f_{i} f_{j}} \rightarrow \prod_{i, j, k=1}^{n} M_{f_{i} f_{j} f_{k}}
$$

can be taken to send $\left(s_{i j}\right)_{i, j=1}^{n}$ to $\left(s_{i j}-s_{i k}+s_{j k}\right)_{i, j, k=1}^{n}$. Similarly, to extend the sequence, one maps

$$
\left(s_{i_{1} \cdots i_{k}}\right)_{i_{1}, \ldots, i_{k}=1}^{n} \text { to }\left(\sum_{j=0}^{k}(-1)^{j} s_{i_{0} \cdots \hat{j_{j} \cdots i_{k}}}\right)_{i_{0}, \ldots, i_{k}=1}^{n}
$$

where the hat means omit that index.
To see that this sequence is indeed exact, as usual we localize at an arbitrary prime ideal, which effectively means we may assume that $f_{1}=1$. Let C_{k} be the k-th term in the sequence, indexing so that $C_{0}=M$. Let $d_{k}: C_{k} \rightarrow C_{k+1}$ be the map in the sequence, so that $d_{k+1} \circ d_{k}=0$. Let $h_{k}: C_{k+1} \rightarrow C_{k}$ be the map taking

$$
\left(s_{i_{0} \cdots i_{k}}\right)_{i_{0}, \ldots, i_{k}=1}^{n} \text { to }\left(s_{1 i_{1} \cdots i_{k}}\right)_{i_{1}, \ldots, i_{k}=1}^{n},
$$

using the identification $M_{f_{1} f_{i_{1}} \cdots f_{i_{k}}} \cong M_{f_{i_{1}} \cdots f_{i_{k}}}$. Then $h_{k} \circ d_{k}+d_{k-1} \circ h_{k-1}=\mathrm{id}_{C_{k}}$ (this is an example of a chain homotopy). Now if $x \in C_{k}$ satisfies $d_{k}(x)=0$, then

$$
x=\operatorname{id}_{C_{k}}(x)=\left(h_{k} \circ d_{k}+d_{k-1} \circ h_{k-1}\right)(x)=d_{k-1}\left(h_{k-1}(x)\right),
$$

so x is in the image of C_{k-1}; this proves exactness.
This can be done purely in the language of commutative algebra, but we indicate the following proof in order to illustrate ideas from the lectures so far. Suppose first that $X=\operatorname{Spec}(R)$ can be written as the disjoint union of two nonempty open subsets U_{1}, U_{2}. Then there is a section $e_{1} \in \mathcal{O}_{X}(X)$ which restricts to 1 on U_{1} and 0 on U_{2}, and a section $e_{2} \in \mathcal{O}_{X}(X)$ which restricts to 1 on U_{2} and 0 on U_{1}. We proved in class that the
natural map $R \rightarrow \mathcal{O}_{X}(X)$ is an isomorphism. To check that e_{1}, e_{2} satisfy $e_{1}+e_{2}=1$, $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}$, it is enough to check this at the level of sections, which we may do on U_{1} and U_{2} separately.
Suppose next that e_{1}, e_{2} are nonzero idempotents which add up to 1 . Then $V\left(e_{1}\right), V\left(e_{2}\right)$ are closed subsets of X; they are disjoint because e_{1} and e_{2} generate the unit ideal, and they cover X because $e_{1} e_{2}=e_{1}\left(1-e_{1}\right)=e_{1}-e_{1}^{2}=0$. Finally, $V\left(e_{1}\right)$ is nonempty: otherwise, e_{1} would have to generate the unit ideal, so we could find $f \in R$ with $e_{1} f=1$; but then $e_{1}=e_{1}^{2} f=e_{1} f=1$ and so $e_{2}=1-e_{1}=0$, a contradiction. Similarly, $V\left(e_{2}\right)$ is nonempty, so they form a partition of X into two nonempty closed sets.
5. (a) Let R be a discrete valuation ring with fraction field K. Then $\operatorname{Spec}(R)=\{0, \mathfrak{p}\}$ for \mathfrak{p} the maximal ideal of R; the unique closed point is \mathfrak{p}, so $\{0\}$ is an open subset containing no closed points.
(b) Let R be a finitely generated algebra over a field K. To prove that the closed points of $\operatorname{Spec}(R)$ are dense, it suffices to check that for every $f \in R$, if the distinguished open subset $D(f)$ is nonempty, then $D(f)$ contains a maximal ideal. Suppose to the contrary that every maximal ideal of R contains f. Let I be the nilradical of R. By the Nullstellensatz as in Stacks Project, Tag 00FV, every radical ideal of R is the intersection of the maximal ideals containing it. Applying this to I, we see that $f \in I$, so f is nilpotent; consequently, $D(f)$ is empty.
(a) Cover $\mathbb{P}_{\mathbb{Z}}^{1}$ by the open sets $U_{1}=\operatorname{Spec} \mathbb{Z}[t], U_{2}=\operatorname{Spec} \mathbb{Z}\left[t^{-1}\right]$. Then for any $\operatorname{morphism} f: \operatorname{Spec}(\mathbb{Z}) \rightarrow \mathbb{P}_{\mathbb{Z}}^{1}$, we have $f^{-1}\left(U_{1}\right)=V_{1}, f^{-1}\left(U_{2}\right)=V_{2}$ for some covering of $\operatorname{Spec}(\mathbb{Z})$ by two open subsets V_{1}, V_{2}. Recall that each open subset of $\operatorname{Spec}(\mathbb{Z})$ is either empty or the complement of finitely many maximal ideals; in particular, it is necessarily affine. We thus have $V_{1}=\operatorname{Spec} \mathbb{Z}\left[1 / N_{1}\right], V_{2}=$ Spec $\mathbb{Z}\left[1 / N_{2}\right]$ for some nonnegative integers N_{1}, N_{2} which are coprime.
Suppose for the moment that $N_{1}, N_{2}>0$. The maps $V_{1} \rightarrow U_{1}, V_{2} \rightarrow U_{2}$ correspond to ring maps $\mathbb{Z}[t] \rightarrow \mathbb{Z}\left[1 / N_{1}\right], \mathbb{Z}\left[t^{-1}\right] \rightarrow \mathbb{Z}\left[1 / N_{2}\right]$ which induce the same map $\mathbb{Z}\left[t, t^{-1}\right] \rightarrow \mathbb{Z}\left[1 /\left(N_{1} N_{2}\right)\right]$. That is, t and t^{-1} map to elements of \mathbb{Q} which are reciprocals of each other with respective denominators dividing N_{1}, N_{2}. Since N_{1}, N_{2} could in principle be arbitrary, we can in fact realize any nonzero rational number as the image of t.
The excluded case $N_{1}=0$ corresponds to the map $\mathbb{Z}\left[t^{-1}\right] \rightarrow \mathbb{Z}$ taking t^{-1} to 0 , and vice versa. We conclude that the set of maps is in fact $\mathbb{Q} \cup\{\infty\}$; in other words, it is the same as the set of maps $\operatorname{Spec}(\mathbb{Q}) \rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$!

