Math 203B (Algebraic Geometry), UCSD, winter 2016 Solutions for problem set 3

- 1. (a) Since f is a unit in R_f , any prime ideal of R_f contracts to a prime ideal of Rnot containing f. Conversely, if $\mathfrak{p} \in \operatorname{Spec} R$ does not contain f, then $\mathfrak{p}R_f$ is again prime (if $(m_1/f^{n_1})(m_2/f^{n_2}) \in \mathfrak{p}R_f$, then $m_1m_2f^? \in \mathfrak{p}$, so $m_1m_2 \in \mathfrak{p}$) and contracts to \mathfrak{p} (similar argument); hence the map $\operatorname{Spec} R_f \to \operatorname{Spec} R$ has image equal to D(f). The map $\operatorname{Spec} R_f \to D(f)$, which we've just shown is surjective, is also injective: if $\mathfrak{p} \in D(f)$ is the contraction of $\mathfrak{q} \in \operatorname{Spec} R_f$, then $\mathfrak{p}R_f \subseteq \mathfrak{q}$ and $\mathfrak{q} \subseteq \mathfrak{p}R_f$ (both easily). Moreover, the continuous bijection $\operatorname{Spec} R_f \to D(f)$ is continuous: the open subset $D(m/f^?)$ of $\operatorname{Spec} R_f$ coincides with $D(mf) \subseteq D(f)$.
 - (b) By definition, $D_+(f)$ is the subset of Spec S consisting of homogeneous relevant prime ideals not containing f, equipped with the subspace topology. The map Spec $S_{f,0} \to D_+(f)$ takes $\mathfrak{p} \in \operatorname{Spec} S_{f,0}$ to the ideal $\mathfrak{q} = \bigoplus_{n=0}^{\infty} \mathfrak{q}_n$ in which \mathfrak{q}_n consists of those $x \in S_n$ such that $x^d f^{-n} \in \mathfrak{p}$. The inverse map takes $\mathfrak{q} = \bigoplus_{n=0}^{\infty} \mathfrak{q}_n$ to the ideal $\sum_{n=0}^{\infty} f^{-n} \mathfrak{q}_{dn}$ of $S_{f,0}$. This map is bicontinuous: a basis of the topology on $D_+(f)$ is given by sets of the form $D_+(fg)$ where g is homogeneous of some degree e > 0, and these are identified with the sets $D(g^d/f^e) \subseteq \operatorname{Spec} S_{f,0}$ which again form a basis of the topology.
- 2. The sections of the structure sheaf on $D_+(x_i) \subseteq \mathbb{P}_R^d$ equal the ring $R[x_0/x_i, \ldots, x_d/x_i]$, where the factor x_i/x_i is omitted. The global sections are the collections of local sections which agree on overlaps. To compute these, note that the sections on any intersection of the $D_+(x_i)$ inject into the ring $D_+(x_0 \cdots x_d)$, which consists of all formal sums $\sum c_{e_0,\ldots,e_d} x_0^{e_0} \cdots x_d^{e_d}$ with $c_{e_0,\ldots,e_d} \in R$ and the sum running over all (d+1)-tuples (e_0,\ldots,e_d) of integers summing to 0. The subring corresponding to $D_+(x_i)$ consists of the sums running over all tuples in which $e_j \geq 0$ for all $j \neq i$. The global sections are given by the intersection of these subring, which consists of sums running over all tuples for which $e_i \geq 0$ for all i. Since $\mathbb{P}_R^d \to \operatorname{Spec} R$ is not an isomorphism (e.g., because it is not injective on underlying sets), \mathbb{P}_R^d cannot be affine.
- 3. (a) It is obvious that if Spec R is reduced, then R is reduced. Conversely, if R is reduced, then R_p is reduced for each p ∈ R: if (r₁/s₁)ⁿ = 0 in R_p, then r₁ⁿ is killed by some s₂ ∈ R − p, so (r₁s)ⁿ = 0, so r₁s = 0 because R is reduced, so r₁/s₁ = 0 in R_p. For each open subset U of X, O_X(U) is a subring of the reduced ring ∏_{p∈R} R_p and hence is also reduced.
 - (b) This is similar to (a). On one hand, if X is reduced, then $\mathcal{O}_{X,x}$ is a direct limit of reduced rings and is hence reduced. Conversely, if $\mathcal{O}_{X,x}$ is reduced for each $x \in X$, then for each open subset U of X, $\mathcal{O}_X(U)$ is a subring of the reduced ring $\prod_{x \in U} \mathcal{O}_{X,x}$ and hence is also reduced.
 - (c) For R a ring, the nilpotent elements of R form an ideal (if $x_1^{n_1} = x_2^{n_2} = 0$, then $(x_1 + x_2)^{n_1 + n_2 1} = 0$) called the *nilradical* of R; let R_{red} be the quotient of R by

the nilradical. Note that $\operatorname{Spec} R_{\operatorname{red}} \to \operatorname{Spec} R$ is a closed immersion which is also surjective on underlying topological spaces (because every prime ideal contains the nilradical), hence a homeomorphism (using the following problem). Also, the functor $R \mapsto R_{\operatorname{red}}$ from rings to reduced rings is left adjoint to the forgetful functor.

For (X, \mathcal{O}_X) a scheme, put $X_{\text{red}} = (X, \mathcal{O}_{X, \text{red}})$, where $\mathcal{O}_{X, \text{red}}(U)$ with the set of functions $s : U \to \bigsqcup_{x \in X} \mathcal{O}_{X, x, \text{red}}$ with $s(x) \in \mathcal{O}_{X, x, \text{red}}$ for all $x \in U$ which are locally represented by sections of $\mathcal{O}(X)$. It will suffice (both to check that X_{red} is a scheme and to get the adjoint property) to show that if X = Spec R is affine, then $X_{\text{red}} = \text{Spec } R_{\text{red}}$; this reduces to showing that $\mathcal{O}_{X, \text{red}}(D(f)) = R_{\text{red}, f}$. This is true because for $\mathfrak{p} \in \text{Spec } R$, $\mathcal{O}_{X, \mathfrak{p}, \text{red}} = (R_{\mathfrak{p}})_{\text{red}} = (R_{\text{red}})_{\mathfrak{p}}$. (By a similar argument, one sees that for every open subset U of X, we have $\mathcal{O}_{X, \text{red}}(U) = \mathcal{O}_X(U)_{\text{red}}$.)

- 4. The map Spec $B \to \text{Spec } A$ identifies Spec B with the set of $\mathfrak{p} \in \text{Spec } A$ containing $I = \ker(A \to B)$. Under this identification, the open subset $D(\overline{f})$ of Spec B equals $D(f) \cap \text{Spec } B$ for any $f \in A$ lifting $\overline{f} \in B$. Hence Spec B is homeomorphic to the closed subset V(I) of A. The morphism $f^{\sharp} : \mathcal{O}_X \to f_*\mathcal{O}_Y$ is surjective on stalks: if $\mathfrak{p} \notin \text{Spec } B$ the target is the zero map, and otherwise it is the map $A_{\mathfrak{p}} \to B_{\mathfrak{p}B}$ which is again surjective.
- 5. In both cases, it suffices to match up a basis of open subsets. By definition (plus an earlier exercise), Proj S admits a basis of open subschemes $D_+(f) \cong \operatorname{Spec} S_{f,0}$ for f varying over homogeneous elements of positive degree. The key point is that $D_+(f) = D_+(f^m)$, so we need only consider f of degree divisible by m; for such f, the graded rings $S, S' = S_0 \oplus \bigoplus_{n=m}^{\infty} S_n$, and $S'' = \bigoplus_{n=0}^{\infty} S_{mn}$ satisfy $S_{f,0} = S'_{f,0} = S'_{f,0}$ (because they are defined using the same elements).
- 6. The classical Veronese embedding is defined in terms of homogeneous coordinates by the formula

$$[x:y:z] \mapsto [x^2:xy:xz:y^2:yz:z^2].$$

This corresponds to a morphism

$$R[x_0,\ldots,x_5] \to R[x,y,z]$$

of graded if we put each of x_0, \ldots, x_5 in degree 2 rather than degree 1: we may then send x_0, \ldots, x_5 to $x^2, xy, xz, y^2, yz, z^2$, respectively.