Math 203B (Algebraic Geometry), UCSD, winter 2016 Solutions for problem set 4

- 1. In one direction, if F(Spec R) = M is a finitely generated R-module, then F(Spec R_f) = M_f is a finitely generated R-module. In the other direction, suppose that f₁,..., f_n ∈ R generate the unit ideal and M_{f1},..., M_{fn} are finitely generated modules over R_{f1},..., R_{fn}, respectively. We may then choose finite subsets S₁,..., S_n of M such that S_i generates M_{fi} over R_{fi} (namely, choose a finite set of generators of M_{fi} and then clear denominators). Put S = S₁ ∪ ··· ∪ S_n, let F be a free R-module indexed by the elements of S, and let F → M be the induced morphism. Then for each p ∈ Spec R, there exists i ∈ {1,...,n} such that p ∈ D(f_i); then M_p = (M_{fi})_p and F_{fi} → M_{fi} is surjective, so F_p → M_p is surjective. Since this is true for all p, it follows that F → M is surjective, so the affine communication lemma implies that if the property holds for a single covering of X by open affines, then it holds for every open affine subscheme of X.
- 2. The property of upper semicontinuity may be checked locally on X, so we may assume at once that $X = \operatorname{Spec}(R)$ is affine, so that $\mathcal{F} \cong \tilde{M}$ for $M = \mathcal{F}(X)$. The upper semicontinuity property states that for any $x \in X$, if $\dim_{\kappa(x)} \mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x = n$, then there exists an open neighborhood U of x in X such that $\dim_{\kappa(y)} \mathcal{F}_y/\mathfrak{m}_y \mathcal{F}_y \leq n$ for all $y \in U$. To check this, choose any elements $m_1, \ldots, m_n \in \mathcal{F}_x$ which form a basis of $\mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x$ over $\kappa(x)$. By Nakayama's lemma, m_1, \ldots, m_n generate \mathcal{F}_x as a module over $\mathcal{O}_{X,x}$. Now choose some generators m'_1, \ldots, m'_k of M as an R-module. In \mathcal{F}_x , we can write $m'_i = \sum_j f_{ij}m_j$ for some $f_{ij} \in \mathcal{O}_{X,x}$. Now find an open neighborhood U of x in X such that the m_i , the f_{ij} , and the equality $m'_i = \sum_j f_{ij}m_j$ all lift to U. Then m_1, \ldots, m_n generate $\mathcal{F}(U)$, so they also generate \mathcal{F}_y for all $y \in U$. Therefore $\dim_{\kappa(y)} \mathcal{F}_y/\mathfrak{m}_y \mathcal{F}_y \leq n$ for all $y \in U$, as desired.
- 3. (a) An *R*-module *M* is *locally free* if there exist $f_1, \ldots, f_n \in R$ generating the unit ideal such that M_{f_i} is a free module over R_{f_i} . If *M* is a locally finite free *R*-module, then clearly M_f is a locally finite free R_f -module (using the same f_1, \ldots, f_n). Conversely, suppose that there exist $f_1, \ldots, f_n \in R$ generating the unit ideal such that M_{f_i} is a locally finite free module over R_{f_i} . By an earlier exercise, *M* is then finitely generated, so it suffices to check that it is locally free. By hypothesis, for each *i*, there exist $g_{i1}, \ldots, g_{im} \in R_{f_i}$ generating the unit ideal such that $(M_{f_i})_{g_{ij}}$ is a free module over $(R_{f_i})_{g_{ij}}$. By clearing denominators, we may force $g_{ij} \in R$; we may then identify $(R_{f_i})_{g_{ij}}$ with $R_{f_i g_{ij}}$ and $(M_{f_i})_{g_{ij}}$ with $M_{f_i g_{ij}}$. For each fixed *i*, the sets $D(f_i g_{ij})$ cover $D(f_i)$; consequently, as both *i* and *j* vary, the sets $D(f_i g_{ij})$ cover Spec *R*. Hence *M* is locally free.
 - (b) The original problem statement was missing some conditions on the vector bundle: it must come with a map $Y \times_X Y \to Y$ corresponding to addition on each $\mathbb{A}^n_{U_i}$, and with a map $\mathbb{A}^1_X \times_X Y \to Y$ corresponding to scalar multiplication on each $\mathbb{A}^n_{U_i}$.

- 4. It suffices to check that for M a finitely generated module over a reduced ring R such that dim_{κ(p)} M ⊗_R κ(p) = n for all p ∈ Spec R, every p ∈ Spec R admits a distinguished open neighborhood D(f) such that M_f is free of rank n over R_f. Let m₁,..., m_n ∈ M be elements which are linearly independent in M ⊗_R κ(p); they then form a basis. By Nakayama's lemma, they also generate M_p. Now choose some other finite set s₁,..., s_k of elements of M which generate M, and choose elements A_{ij} ∈ R such that m_j = ∑_i A_{ij}s_i. The fact that m₁,..., m_n are linearly independent in M ⊗_R κ(q) and hence (by Nakayama again) generate M_q. It follows that the map from the free module Rⁿ_f to M_f defined by m₁,..., m_n is surjective. To check that it is injective, choose the coefficients of a relation among m₁,..., m_n; these project to zero in every prime ideal of R_f, and hence are zero because R is reduced.
- 5. (a) In one direction, the base change of Spec $S \to$ Spec R to Spec R_f is Spec $S_f \to$ Spec R_f , where we use the map $R \to S$ to view f as an element of S. In the other direction, suppose that $Y \to$ Spec R is a morphism and there exist $f_1, \ldots, f_n \in R$ such that $Y_i = Y \times_{\text{Spec } R}$ Spec R_{f_i} is affine. We check that Y is affine by verifying the conditions of HW2 problem 3: the elements $f_1, \ldots, f_n \in \mathcal{O}_Y(Y)$ generate the unit ideal (since they do so already in R), and Y_i is the open subscheme of Yconsisting of those points y for which $f_i \notin \mathfrak{m}_{Y,y}$ (by the fact that morphisms of schemes induce *local* homomorphisms of local rings).
 - (b) Combine (a) with problem 1.
 - (c) The fiber of $x \in X$ is equal to the underlying space of the scheme $Y \times_X \operatorname{Spec} \kappa(x)$; so to check that a finite morphism is quasi-finite, we may assume that $X = \operatorname{Spec} K$. But then $Y = \operatorname{Spec} A$ for A a finite K-algebra, and we know that such an algebra has only finitely many connected components (e.g., because each one must have positive dimension).

For an example of a quasi-finite morphism which is not finite, take the open immersion

$$\operatorname{Spec} K[T, T^{-1}] \to \operatorname{Spec} K[T]$$

where K is any field. The inverse image of each point is either empty or a single point, but the underlying map of rings is not finite.

6. (a) For Y, X two schemes over some base S, the graph of a morphism $f: Y \to X$ of S-schemes is by definition the closed immersion $Y \to Y \times_S X$ corresponding to the pair $(\operatorname{id}_Y: Y \to Y, f: Y \to X)$ (if no base is specified, use the universal base $\operatorname{Spec} \mathbb{Z}$). If L/K is a finite Galois extension of fields with group G, then each $g \in G$ defines a map $L \to L$ of rings over K and hence a morphism $\operatorname{Spec} L \to \operatorname{Spec} L$ of schemes over $\operatorname{Spec} K$, and its graph Γ_g is a closed immersion of $\operatorname{Spec} L$ into $\operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} L$. The claim then is that $\operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} L$ is the disjoint union of open-and-closed subschemes, each of which is the image of one of these

graphs; this amounts to the algebraic statement that $L \otimes_K L$ splits as a direct sum of copies of L. For this, choose a primitive element α for L over K, let P(T)be its minimal polynomial, and write

$$L \otimes_K L \cong L \otimes_K K[T]/(P(T)) \cong L[T]/(P(T)) = \prod L[T]/(T - \alpha_i) \cong \prod L$$

where $P(T) = \prod_{i} (T - \alpha_i)$.

- (b) If L/K is purely inseparable and $L \neq K$, then they are both of some positive characteristic p, and there exists some $x \in L$ which has a p-th root y in L but not in K. Now $y \otimes 1 1 \otimes y$ is nonzero in $L \otimes_K L$, but its pth power is $x \otimes 1 1 \otimes x = 0$; so Spec $L \times_{\text{Spec } K}$ Spec $L = \text{Spec}(L \otimes_K L)$ is not reduced.
- 7. It suffices to check the claim when Y is affine; in this case, X is itself quasicompact. (Namely, Y is covered by opens whose inverse images are quasicompact, but only finitely many are needed because Y is also quasicompact.) Pick open affine subsets U_1, \ldots, U_n which cover X. Because f is quasiseparated, for any i, j, the space $X \times_{X \times_Y X}$ $U_i \times_Y U_j$ is quasicompact, but this space is none other than $U_i \cap U_j$. We can thus choose finitely many open affine subsets V_{ijk} of X that cover $U_i \cap U_j$. Let \mathcal{F} be a quasicoherent sheaf on X; its pushforward is then the sheaf associated to the module which is the kernel of the map

$$\bigoplus_{i=1}^{n} \mathcal{F}(U_i) \to \bigoplus_{i,j=1}^{n} \bigoplus_{k} \mathcal{F}(V_{ijk}).$$