## Math 203B (Algebraic Geometry), UCSD, winter 2016 Solutions for problem set 5

1. The correct formulas are

$$
\begin{aligned}
& F^{0}(M)=\operatorname{ker}\left(\times T_{1}: M \rightarrow M\right) \cap \operatorname{ker}\left(\times T_{2}: M \rightarrow M\right) \\
& F^{1}(M)=\frac{\left\{\left(m_{1}, m_{2}\right) \in M \times M: T_{2} m_{1}=T_{1} m_{2}\right\}}{\left(T_{1} m, T_{2} m\right): m \in M} \\
& F^{2}(M)=M /\left(\operatorname{image}\left(\times T_{1}: M \rightarrow M\right)+\operatorname{image}\left(\times T_{2}: M \rightarrow M\right)\right) \\
& F^{i}(M)=0 \quad(i \geq 3) .
\end{aligned}
$$

In other words, these are the cohomology groups of the complex

$$
0 \rightarrow M \xrightarrow{m \mapsto\left(T_{1} m_{2} T_{2} m\right)} M \times M \xrightarrow{\left(m_{1}, m_{2}\right) \rightarrow\left(T_{2} m_{1}-T_{1} m_{2}\right)} M \rightarrow 0 .
$$

The proof that these form a universal cohomological functor is similar to the onevariable case done in class.
2. For any exact sequence (in the usual orientation)

$$
0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0
$$

the snake lemma yields an exact sequence

$$
0 \rightarrow M[f] \rightarrow N[f] \rightarrow P[f] \rightarrow M / f M \rightarrow N / f N \rightarrow P / f P \rightarrow 0
$$

where $M[f]=\operatorname{ker}(\times f: M \rightarrow M)$. Consequently, the derived functors are

$$
\begin{aligned}
& F^{0}(M)=M / f M \\
& F^{1}(M)=M[f] \\
& F^{i}(M)=0 \quad(i \geq 2)
\end{aligned}
$$

To see that these form a universal cohomological functor, let $F^{0} \rightarrow F^{\prime 0}$ be a morphism of functors and let $F^{\prime i}$ be a cohomological functor. To obtain the correct morphism $F^{\prime 1}(P) \rightarrow F^{1}(P)=P[f]$, choose an exact sequence (in the usual orientation)

$$
0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0
$$

with $N$ a free module, so that the snake lemma yields $P[f]=\operatorname{ker}(M / f M \rightarrow N / f N)$; then use the maps $F^{\prime 0}(M) \rightarrow M / f M, F^{\prime 0}(N) \rightarrow N / f N$ to obtain a morphism $F^{\prime 1}(P) \rightarrow$ $P[f]$. To see that this morphism is independent of choices, it suffices to compare $N$ with a larger free module $N \oplus N^{\prime}$; this is similar to the example done in class.
3. (a) In one direction, if $A$ is an abelian group which is an injective object, then it is divisible: for any positive integer $n$ and any $a \in A$, the map $n \mathbb{Z} \rightarrow A$ taking $n$ to $a$ must factor through the injection $n \mathbb{Z} \rightarrow \mathbb{Z}$, and the image $a^{\prime} \in A$ of $1 \in \mathbb{Z}$ satisfies $n a^{\prime}=a$. In the other direction, to see that $A$ being divisible implies $A$ being injective, using Zorn's lemma (or transfinite induction or your favorite other equivalent of the axiom of choice), it suffices to check the injectivity property for an injection $B \rightarrow C$ where $C / B$ is generated by a single element $c$. If $C / B$ is finite of order $n$, then by hypothesis we can divide the image of $n c$ in $A$ by $n$ and send $c$ there. If $C / B$ is infinite, we can send $c$ wherever we like (to 0 , for example).
(b) Let $\mathcal{F}$ be the sheaf in question. Let $\mathcal{G} \rightarrow \mathcal{H}$ be an injective morphism of sheaves; then the map $\mathcal{G}_{x} \rightarrow \mathcal{H}_{x}$ of stalks is injective for each $x \in X$. Let $\mathcal{G} \rightarrow \mathcal{F}$ be a morphism of sheaves. For each $x \in X$, we have a map $\mathcal{F}_{x} \rightarrow I_{x}$ and hence a map $\mathcal{G}_{x} \rightarrow I_{x}$ which factors through a map $\mathcal{H}_{x} \rightarrow I_{x}$. Now define the map $\mathcal{H} \rightarrow \mathcal{F}$ taking $s \in \mathcal{H}(U)$ to the element of $\mathcal{F}(U)=\prod_{x \in U} I_{x}$ whose $x$-component is the image of $s \in \mathcal{H}_{x}$ in $I_{x}$.
4. Start with a section $s \in \mathcal{H}(X)$. By definition, there exists a covering of $X$ by some open sets $\left\{U_{i}\right\}_{i \in I}$ such that the restriction of $s$ to each $U_{i}$ lifts to some $s_{i}^{\prime} \in \mathcal{G}\left(U_{i}\right)$; we must find a way to choose these lifts so that they agree on overlaps. If $I$ is a two-element set, say $I=\{i, j\}$, we first pick $s_{i}^{\prime}$ arbitrarily. We then choose some lift $t_{j} \in \mathcal{G}\left(U_{j}\right)$, use the flasque condition to find some section $t_{j}^{\prime} \in \mathcal{G}\left(U_{j}\right)$ whose restriction to $\mathcal{G}\left(U_{i} \cap U_{j}\right)$ equals the restriction of $t_{j}-s_{i}^{\prime}$, then take $s_{j}^{\prime}=t_{j}-t_{j}^{\prime}$.
To generalize to an arbitrary index set $I$, we use the axiom of choice to choose an isomorphism of $I$ with some ordinal, so as to obtain a well-ordering. We may then construct the $s_{i}^{\prime}$ by transfinite induction. There is nothing to check at limit steps. To construct $s_{i}^{\prime}$ given $s_{j}^{\prime}$ for all $j<i$, we use the induction hypothesis to assemble a lift on $\mathcal{G}(U)$ for $U=\bigcup_{j<i} U_{j}$, then combine the lifts on $U$ and $U_{i}$ using the previous paragraph.
5. (a) Identify the closed points of $\mathbb{P}_{K}^{d-1}$ with the projectivization of the dual vector space $V^{*}$. For each $s \in V$, the subset $U_{s}$ of $P \in X$ for which $s$ generates $\mathcal{L}_{P}$ is an open subset, and the elements of $V$ define a map $U \rightarrow \mathbb{P}_{K}^{d-1}$ (whose image is contained in the affine $(d-1)$-space corresponding to the complement of the kernel of $\left.s: V^{*} \rightarrow K\right)$. By hypothesis, the $U_{s}$ cover all of $X$, so we get a well-defined map $X \rightarrow \mathbb{P}_{K}^{d-1}$.
(b) With notation as in (a), note that $U_{s}$ is precisely the inverse image of the complement of the hyperplane in $\mathbb{P}_{K}^{d-1}$ cut out by $s$. Consequently, if $s(P)=0, s(Q) \neq 0$, then $P \in U_{s}, Q \notin U_{s}$ and so $P$ and $Q$ must have distinct images.
(c) We may check the claim locally at a closed point $P \in X$. Let $Q \in \mathbb{P}_{K}^{d-1}$ be the image of $P$; the given condition implies that the map $\mathcal{O}_{\mathbb{P}_{K}^{d-1}, Q} \rightarrow \mathcal{O}_{X, P}$ induces a
surjective morphism of cotangent spaces. Since $\mathcal{O}_{X, P}$ is a discrete valuation ring, this implies that the morphism of local rings itself is surjective.
6. It suffices to check that for each nonnegative integer $k$, the residue is invariant whenever $f$ has pole order at most $k$. In this case, we can formally write $f=f_{k} T^{-k}+$ $\cdots+f_{-1} T^{-1}+\cdots$, and then the coefficient of $T^{-1} d T$ in the image of $f d T$ under the substitution $T \mapsto a_{1} T+a_{2} T^{2}+\cdots$ depends only on $f_{-k}, \ldots, f_{-1}, a_{1}, \ldots, a_{k}$. In fact, it can be written as some polynomial in these quantities with coefficients in $\mathbb{Z}$ depending only on $k$ (not on the ring $R$ ).

So now we must check that some specific polynomial in $f_{-k}, \ldots, f_{-1}, a_{1}, \ldots, a_{k}$ with integer coefficients is equal to the polynomial $f_{-1}$. But to check that a multivariate polynomial with integer coefficients is identically 0 , it suffices to check that its evaluation at any complex numbers is zero, and this follows immediately from the Cauchy integral formula from complex analysis: the coefficient of $T^{-1} d T$ equals $1 /(2 \pi i)$ times the integral of $f d T$ around any simple closed curve which loops counterclockwise around 0 and is small enough not to contain any other singularities of $f$. Making a substitution of the form $T \mapsto a_{1} T+\cdots+a_{k} T^{k}$ (there is no need to include any higher coefficients!) does not affect the looping property.

