Math 203B (Algebraic Geometry), UCSD, winter 2016 Problem Set 6 (due Wednesday, February 17 by 5pm)

Solve the following problems, and turn in the solutions to *four* of them.

- 1. Prove by a direct computation of Čech cohomology that $H^1(\mathbb{P}^2_R, \mathcal{O}(n)) = 0$ for all $n \in \mathbb{Z}$.
- 2. Let K be a field. Compute the Hilbert polynomials of the following schemes.
 - (a) A curve of degree d in \mathbb{P}^2_K .
 - (b) A rational normal curve in \mathbb{P}^3_K , that is, the Zariski closure in \mathbb{P}^3_K of $V(y-x^2, z-x^3) \subseteq \mathbb{A}^3_K$.
 - (c) The Zariski closure of \mathbb{P}^3_K of the union of the three coordinate axes in \mathbb{A}^3_K .
- 3. Let K be an algebraically closed field. Let $X \subseteq \mathbb{P}_K^d$ be an irreducible closed subvariety of dimension 1. Prove that X can be written as the union of two open affine subvarieties whose intersection is also affine; deduce as a corollary that for every quasicoherent sheaf \mathcal{F} on X, $H^i(X, \mathcal{F}) = 0$ for all i > 1. (Hint: look at the intersections of X with the complements of hyperplanes.)
- 4. Let $f: Y \to X$ be a morphism of schemes. Prove that the statement " $Y \times_X \text{Spec}(R)$ is a union of open subschemes which are the spectra of finitely generated *R*-algebras" is a local property in the sense of the affine communication lemma. If this holds, we say *f* is *locally of finite type*. (If you only need finitely many opens each time, we say *f* is *of finite type*; this is quasicompact + locally of finite type.)
- 5. Let K be an algebraically closed field. Let $X \subseteq \mathbb{P}^d_K$ be an irreducible closed subvariety of dimension 1. Prove that there exists a finite morphism $X \to \mathbb{P}^1_K$. (Hint: project away from a point.)
- 6. Let K be an algebraically closed field. Show that there is a unique way to assign a *residue* to each meromorphic differential ω on \mathbb{P}^1_K at each closed point P of \mathbb{P}^1_K satisfying the following conditions. (A *meromorphic differential* is a section of $\Omega_{\mathbb{P}^1_K/K}$ over some nonempty open subscheme.)
 - (i) For P = 0, the residue is computed by writing $\omega = f dT$ and taking the residue of f dT (i.e., the coefficient of $T^{-1} dT$).
 - (ii) If L is a linear fractional transformation, then the residue of ω at L(P) is the same as the residue of $L^*(\omega)$ at P. Here L^* is the formal pullback of ω ; in equations, if L(z) = (az + b)/(cz + d) and $\omega = f(z) dz$, then

$$L^*(\omega) = f\left(\frac{az+b}{cz+d}\right)\frac{d}{dz}\left(\frac{az+b}{cz+d}\right)\,dz.$$

7. Let K be an algebraically closed field. Prove the residue theorem for \mathbb{P}^1_K : for any meromorphic differential ω on \mathbb{P}^1_K , the sum of the residues of ω over all points of \mathbb{P}^1_K (as defined in the previous exercise) is equal to 0. Hint: one possible approach is reduction to the case $K = \mathbb{C}$ by formulating the problem as a collection of polynomial identities.