Math 203B (Algebraic Geometry), UCSD, winter 2016 Problem Set 6 (due Wednesday, February 17 by 5pm)

Solve the following problems, and turn in the solutions to four of them.

1. Prove by a direct computation of Čech cohomology that $H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right)=0$ for all $n \in \mathbb{Z}$.
2. Let K be a field. Compute the Hilbert polynomials of the following schemes.
(a) A curve of degree d in \mathbb{P}_{K}^{2}.
(b) A rational normal curve in \mathbb{P}_{K}^{3}, that is, the Zariski closure in \mathbb{P}_{K}^{3} of $V\left(y-x^{2}, z-\right.$ $\left.x^{3}\right) \subseteq \mathbb{A}_{K}^{3}$.
(c) The Zariski closure of \mathbb{P}_{K}^{3} of the union of the three coordinate axes in \mathbb{A}_{K}^{3}.
3. Let K be an algebraically closed field. Let $X \subseteq \mathbb{P}_{K}^{d}$ be an irreducible closed subvariety of dimension 1. Prove that X can be written as the union of two open affine subvarieties whose intersection is also affine; deduce as a corollary that for every quasicoherent sheaf \mathcal{F} on $X, H^{i}(X, \mathcal{F})=0$ for all $i>1$. (Hint: look at the intersections of X with the complements of hyperplanes.)
4. Let $f: Y \rightarrow X$ be a morphism of schemes. Prove that the statement " $Y \times_{X} \operatorname{Spec}(R)$ is a union of open subschemes which are the spectra of finitely generated R-algebras" is a local property in the sense of the affine communication lemma. If this holds, we say f is locally of finite type. (If you only need finitely many opens each time, we say f is of finite type; this is quasicompact + locally of finite type.)
5. Let K be an algebraically closed field. Let $X \subseteq \mathbb{P}_{K}^{d}$ be an irreducible closed subvariety of dimension 1. Prove that there exists a finite morphism $X \rightarrow \mathbb{P}_{K}^{1}$. (Hint: project away from a point.)
6. Let K be an algebraically closed field. Show that there is a unique way to assign a residue to each meromorphic differential ω on \mathbb{P}_{K}^{1} at each closed point P of \mathbb{P}_{K}^{1} satisfying the following conditions. (A meromorphic differential is a section of $\Omega_{\mathbb{P}_{K}^{1} / K}$ over some nonempty open subscheme.)
(i) For $P=0$, the residue is computed by writing $\omega=f d T$ and taking the residue of $f d T$ (i.e., the coefficient of $T^{-1} d T$).
(ii) If L is a linear fractional transformation, then the residue of ω at $L(P)$ is the same as the residue of $L^{*}(\omega)$ at P. Here L^{*} is the formal pullback of ω; in equations, if $L(z)=(a z+b) /(c z+d)$ and $\omega=f(z) d z$, then

$$
L^{*}(\omega)=f\left(\frac{a z+b}{c z+d}\right) \frac{d}{d z}\left(\frac{a z+b}{c z+d}\right) d z .
$$

7. Let K be an algebraically closed field. Prove the residue theorem for \mathbb{P}_{K}^{1} : for any meromorphic differential ω on \mathbb{P}_{K}^{1}, the sum of the residues of ω over all points of \mathbb{P}_{K}^{1} (as defined in the previous exercise) is equal to 0 . Hint: one possible approach is reduction to the case $K=\mathbb{C}$ by formulating the problem as a collection of polynomial identities.
