Math 203B (Algebraic Geometry), UCSD, winter 2016 Problem Set 7 (due Friday, February 26 in class)

Solve the following problems, and turn in the solutions to four of them. Throughout this problem set, let K be an algebraically closed field.

1. In this problem, we show that if $f: X \rightarrow Y$ is a morphism of schemes, it is not always true that the image of an open affine subscheme of X is contained in an open affine subscheme of Y.
(a) Let Z be the affine 4 -space over K identified with the space of 2×2 matrices. Prove that there is an open affine subscheme X of Z whose closed points are the invertible 2×2 matrices over K.
(b) Construct a surjective morphism $X \rightarrow \mathbb{P}_{K}^{1}$. Hint: $\mathrm{GL}_{2}(K)$ acts on \mathbb{P}_{K}^{1} via linear fractional transformations.
2. Let C be a curve over K. Let $g: C \rightarrow \mathbb{P}_{K}^{1}$ be a finite surjective map. Prove that for any nonzero $g \in K(C)$, the divisor of g has the same degree as the divisor of $\operatorname{Norm}_{K(C) / K\left(\mathbb{P}_{K}^{1}\right)} g$; then deduce that this degree equals 0 .
3. Let C be a curve over K.
(a) Prove that every divisor of degree 0 on C is principal if and only if $C \cong \mathbb{P}_{K}^{1}$. (Hint: consider a divisor of the form $(P)-(Q)$, and use the resulting function to define a map $C \rightarrow \mathbb{P}_{K}^{1}$.)
(b) Prove that every line bundle \mathcal{L} of degree 0 on C is trivial if and only if $C \cong \mathbb{P}_{K}^{1}$.
4. Let \mathcal{F} be a vector bundle of rank 2 over \mathbb{P}_{K}^{1}.
(a) Suppose that that there exists a short exact sequence

$$
0 \rightarrow \mathcal{O}\left(n_{1}\right) \rightarrow \mathcal{F} \rightarrow \mathcal{O}\left(n_{2}\right) \rightarrow 0
$$

in which $n_{1} \geq n_{2}$. Prove that the exact sequence splits. Hint: reduce to the case $n_{2}=0$, then use the long exact sequence in cohomology.
(b) Suppose that there exists a short exact sequence

$$
0 \rightarrow \mathcal{O}\left(n_{1}\right) \rightarrow \mathcal{F} \rightarrow \mathcal{O}\left(n_{2}\right) \rightarrow 0
$$

in which $n_{1} \leq n_{2}-1$. Prove that there also exists a short exact sequence

$$
0 \rightarrow \mathcal{O}\left(n_{1}+c\right) \rightarrow \mathcal{F} \rightarrow \mathcal{O}\left(n_{2}-c\right) \rightarrow 0
$$

for some positive integer c. Hint: this time, reduce to the case $n_{1}=-1$ and remember that every line bundle on \mathbb{P}_{K}^{1} of degree n is isomorphic to $\mathcal{O}(n)$. But be careful: the quotient of two vector bundles is not always a vector bundle!
5. Let \mathcal{F} be a vector bundle of rank d over \mathbb{P}_{K}^{1}.
(a) Prove that there exists a filtration $0=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{d}=\mathcal{F}$ of \mathcal{F} by vector subbundles such that each quotient $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is isomorphic to $\mathcal{O}\left(n_{i}\right)$ for some $n_{i} \in \mathbb{Z}$. Hint: use the fact that $\mathcal{F}(n)$ is generated by global sections for n sufficiently large.
(b) Using (a) and the previous exercise, prove that there exists an isomorphism

$$
\mathcal{F} \cong \mathcal{O}\left(n_{1}\right) \oplus \cdots \oplus \mathcal{O}\left(n_{d}\right)
$$

for some $n_{1}, \ldots, n_{d} \in \mathbb{Z}$ (but not necessarily the same ones you found in (a)). Hint: note that the sum of the degrees of the $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is independent of the filtration. Then use the previous exercise to raise the degrees of the $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ for small values of i at the expense of larger values.
6. Assume K is not of characteristic 2 . Let C be the Zariski closure in \mathbb{P}_{K}^{2} of the zero locus of $y^{2}-P(x)$ in \mathbb{A}_{K}^{2}, where $P(x)$ is a polynomial of degree 3 with no repeated roots.
(a) Check that C is smooth.
(b) Prove that the rational section $d x / y$ of Ω is actually a global section.
(c) Prove that the bundle Ω is trivial.
7. For C as in the previous exercise, choose a closed point $O \in C$. Prove that for any two closed points $P, Q \in C$, there exists a unique closed point $R \in C$ such that $(P)-(O)+(Q)-(O)$ and $(R)-(O)$ differ by a principal divisor.

