Math 203B (Algebraic Geometry), UCSD, winter 2016 Problem Set 8 (due Wednesday, March 9 by 5pm)

Solve the following problems, and turn in the solutions to four of them. Note that there are no lectures during the week February 29-March 4.

Optional extra-credit problem (half credit): redo PS 5, problem 1 with the correct answer: the derived functors are the cohomology groups of the complex

$$
0 \rightarrow M \rightarrow M \oplus M \rightarrow M \rightarrow 0
$$

where the first map takes m to $\left(T_{1} m, T_{2} m\right)$ and the second map takes $\left(m_{1}, m_{2}\right)$ to ($T_{1} m_{2}-$ $T_{2} m_{1}$). For full credit, you must check not just that this gives a cohomological functor, but also that it is universal.

1. Using the cohomology of projective space (but not the Riemann-Roch theorem), prove directly that for C a smooth plane curve over an algebraically closed field k, one has $H^{1}\left(C, \Omega_{C / k}\right) \cong k$.
2. Let k be an algebraically closed field of characteristic $p>0$. Verify the RiemannHurwitz formula for the map $f: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$ given by $x \mapsto z=x^{p}-x$. (Note that this map is separable.)
3. Let C be a curve over an algebraically closed field k of genus $g \geq 2$.
(a) Prove that the canonical linear system is always basepoint-free, and therefore defines a morphism $C \rightarrow \mathbb{P}_{k}^{g-1}$.
(b) Prove that this morphism is a closed immersion if and only if C is not hyperelliptic.
(c) Suppose that C is not hyperelliptic. Compute the Hilbert polynomial of C as a closed subscheme of \mathbb{P}^{g-1}.

Hint: use Riemann-Roch.
4. (a) Let C be a curve of genus 3 over an algebraically closed field k. Prove that either C is hyperelliptic, or C is isomorphic to a smooth plane curve of degree 4 .
(b) Let C be a curve of genus 4 over an algebraically closed field k. Prove that either C is hyperelliptic, or C is isomorphic to the intersection of a degree 2 surface and a degree 3 surface in \mathbb{P}_{k}^{3}.
5. Let k be an algebraically closed field of characteristic $\neq 2$.
(a) Let C be the plane curve $x^{4}+y^{4}+z^{4}=0$ over k. Since it is smooth, we know from previous calculations that $H^{1}(C, \Omega)$ is a 3 -dimensional vector space over k. Give an explicit formula for three linearly independent sections of Ω.
(b) Let $P(x) \in k[x]$ of degree $2 g+1$ with no repeated roots, and let C be the hyperelliptic curve coming from the affine curve $y^{2}=P(x)$. Give an explicit formula for g linearly independent sections of Ω.

In both cases, you should check that your elements are linearly independent.
6. A scheme X is separated if the diagonal morphism $X \rightarrow X \times_{\mathbb{Z}} X$ is a closed immersion. This is the schematic analogue of the Hausdorff condition on topological spaces.
(a) Prove that any affine scheme is separated.
(b) Let k be a field, and let X be the union of two copies of \mathbb{A}_{k}^{1} glued along the complement of the closed point $t=0$. Prove that X is not separated.
(c) Give an example of a scheme in which the intersection of some two open affine subspaces fails to be affine. Hint: modify the example from (b).
7. (a) Prove that if X is a separated scheme, then the intersection of any two open affine subspaces of X is again affine. (Hint: write the intersection as a fiber product.)
(b) Let X be a scheme in which any two points of X are contained in some open separated subscheme. Prove that X is separated.
(c) Use (b) to prove that for any ring R, the scheme \mathbb{P}_{R}^{n} is separated.
8. Solve Hartshorne exercise IV.2.5, which proves Hurwitz's theorem on the automorphism groups of curves over a field of characteristic 0 .

