
Math 203B: Algebraic Geometry
UCSD, winter 2016, Kiran S. Kedlaya

The Riemann-Roch theorem

Throughout this lecture, let k be an algebraically closed field and let C be a curve over k,
by which I will mean a smooth irreducible projective variety of dimension 1 over k (or rather,
the associated scheme). Note: I’m switching the field label from capital K to lowercase k to
free up the symbol K; see below.

1 The Riemann-Roch theorem

I stated (and briefly alluded to the proof of) the Riemann-Roch theorem in the last lecture.

Theorem 1 (Riemann-Roch). For every line bundle L on C, there is a canonical perfect
pairing

H0(C,L)×H1(C,Ω⊗ L−1)→ k.

In particular, the two vector spaces have the same dimension.

Let’s now spin out some consequences of this statement.

Corollary 2. The k-vector spaces H1(C,OC) and H0(C,Ω) have the same dimension.

This dimension is an important variant of C, called the genus of C. In the context of
Riemann surfaces (i.e., when k = C), one can show that H0(C,Ω) is equal to the topological
genus of the Riemann surface.

From now on, let g denote the genus of C.

Corollary 3. For every line bundle L on C, we have χ(C,L) = 1− g + deg(L).

Proof. By choosing a rational section of L, we can write L ∼= O(D) for some divisor D.
Using the short exact sequence

0→ OC(P )→ OC(D + P )→ j∗OC → 0

for j : P → C the canonical embedding, we see that χ(C,OC(D + P )) = χ(C,OC(D)).
By induction, it follows that χ(C,L) = χ(C,OC) + deg(L), and χ(C,OC) = 1 − g by the
definition of the genus.

Using the duality from Riemann-Roch, we get the following statement, which itself is
commonly called the Riemann-Roch theorem.

Corollary 4. For every line bundle L on C, we have

dimkH
0(C,L)− dimkH

0(C,Ω⊗ L−1) = 1− g + deg(L).
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You will often see this statement written in the following notation. Let KC (or just K if
C is to be understood) denote the divisor associated to a rational section of Ω, i.e., a divisor
for which O(KC) ∼= Ω. Any such divisor is called a canonical divisor of C. The weird part
is that the divisor is not in fact unique; only its equivalence class modulo principal divisors
is unique. But rather than talking about the canonical divisor class, this terminology seems
to have stuck.

Corollary 5. For every divisor D on C, we have

dimkH
0(C,O(D))− dimkH

0(C,O(KC −D)) = 1− g + deg(D).

Note that by substituting KC −D into this formula, we deduce that

deg(KC) = 2g − 2,

which happens to be the negative of the topological Euler characteristic.

Corollary 6. For every divisor D on C, if deg(D) ≥ 2g − 1, then

dimkH
0(C,O(D)) = 1− g + deg(D).

Proof. If H0(C,O(KC−D)) > 0, then deg(KC−D) can be computed using a global section
instead of a rational section, and therefore must be nonnegative. Consequently, if deg(D) ≥
2g − 1, then deg(KC −D) < 0 and hence H0(C,O(KC −D)) > 0.

Corollary 7. We have g = 0 if and only if C ∼= P1
K.

Proof. If C ∼= P1
K , then deg(Ω) = −2 because the rational section dx has a double pole at

infinity (by writing it as d(y−1) = −y−2dy for y = x−1). This implies g = 0.
Conversely, if g = 0, then choose two distinct points P,Q on C. The divisorD = (P )−(Q)

is of degree 0 ≥ 2g − 1, so dimK H
0(C,O(D)) = 1. Any nonzero element of this space is a

rational function on C with only one simple zero and one simple pole, so it gives rise to a
map C → P1

K which is finite of degree 1, and hence an isomorphism.

Corollary 8. A smooth curve of degree d in P2
K has genus

(
d−1
2

)
.

Proof. For j : C → P2
K the inclusion, we have an exact sequence

0→ OP2
K

(−d)→ OP2
K
→ j∗OC → 0.

Taking the associated long exact sequence yields

0 = H1(P2
K ,OP2

K
)→ H1(C,OC)→ H2(P2

K ,OP2
K

(−d))→ H1(P2
K ,O) = 0,

so this follows from the computation of the cohomology of projective space.

Putting these two corollaries together, we see that a smooth curve of degree 2 (a/k/a a
conic in P2

K) is always isomorphic to P1
K . This fact is classical: if you project from P2

K away
from a point on C, you get a well-defined isomorphism C ∼= P1

K . By contrast, a smooth
curve of degree 3 has genus 1; such a curve (once you fix a point to use as the origin of the
group law) is an example of an elliptic curve.
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2 More on curves of low genus
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