Math 203B: Algebraic Geometry UCSD, winter 2016, Kiran S. Kedlaya
 The Riemann-Roch theorem

Throughout this lecture, let k be an algebraically closed field and let C be a curve over k, by which I will mean a smooth irreducible projective variety of dimension 1 over k (or rather, the associated scheme). Note: I'm switching the field label from capital K to lowercase k to free up the symbol K; see below.

1 The Riemann-Roch theorem

I stated (and briefly alluded to the proof of) the Riemann-Roch theorem in the last lecture.
Theorem 1 (Riemann-Roch). For every line bundle \mathcal{L} on C, there is a canonical perfect pairing

$$
H^{0}(C, \mathcal{L}) \times H^{1}\left(C, \Omega \otimes \mathcal{L}^{-1}\right) \rightarrow k
$$

In particular, the two vector spaces have the same dimension.
Let's now spin out some consequences of this statement.
Corollary 2. The k-vector spaces $H^{1}\left(C, \mathcal{O}_{C}\right)$ and $H^{0}(C, \Omega)$ have the same dimension.
This dimension is an important variant of C, called the genus of C. In the context of Riemann surfaces (i.e., when $k=\mathbb{C}$), one can show that $H^{0}(C, \Omega)$ is equal to the topological genus of the Riemann surface.

From now on, let g denote the genus of C.
Corollary 3. For every line bundle \mathcal{L} on C, we have $\chi(C, \mathcal{L})=1-g+\operatorname{deg}(\mathcal{L})$.
Proof. By choosing a rational section of \mathcal{L}, we can write $\mathcal{L} \cong \mathcal{O}(D)$ for some divisor D. Using the short exact sequence

$$
0 \rightarrow \mathcal{O}_{C}(P) \rightarrow \mathcal{O}_{C}(D+P) \rightarrow j_{*} \mathcal{O}_{C} \rightarrow 0
$$

for $j: P \rightarrow C$ the canonical embedding, we see that $\chi\left(C, \mathcal{O}_{C}(D+P)\right)=\chi\left(C, \mathcal{O}_{C}(D)\right)$. By induction, it follows that $\chi(C, \mathcal{L})=\chi\left(C, \mathcal{O}_{C}\right)+\operatorname{deg}(\mathcal{L})$, and $\chi\left(C, \mathcal{O}_{C}\right)=1-g$ by the definition of the genus.

Using the duality from Riemann-Roch, we get the following statement, which itself is commonly called the Riemann-Roch theorem.

Corollary 4. For every line bundle \mathcal{L} on C, we have

$$
\operatorname{dim}_{k} H^{0}(C, \mathcal{L})-\operatorname{dim}_{k} H^{0}\left(C, \Omega \otimes \mathcal{L}^{-1}\right)=1-g+\operatorname{deg}(\mathcal{L})
$$

You will often see this statement written in the following notation. Let K_{C} (or just K if C is to be understood) denote the divisor associated to a rational section of Ω, i.e., a divisor for which $\mathcal{O}\left(K_{C}\right) \cong \Omega$. Any such divisor is called a canonical divisor of C. The weird part is that the divisor is not in fact unique; only its equivalence class modulo principal divisors is unique. But rather than talking about the canonical divisor class, this terminology seems to have stuck.

Corollary 5. For every divisor D on C, we have

$$
\operatorname{dim}_{k} H^{0}(C, \mathcal{O}(D))-\operatorname{dim}_{k} H^{0}\left(C, \mathcal{O}\left(K_{C}-D\right)\right)=1-g+\operatorname{deg}(D) .
$$

Note that by substituting $K_{C}-D$ into this formula, we deduce that

$$
\operatorname{deg}\left(K_{C}\right)=2 g-2,
$$

which happens to be the negative of the topological Euler characteristic.
Corollary 6. For every divisor D on C, if $\operatorname{deg}(D) \geq 2 g-1$, then

$$
\operatorname{dim}_{k} H^{0}(C, \mathcal{O}(D))=1-g+\operatorname{deg}(D)
$$

Proof. If $H^{0}\left(C, \mathcal{O}\left(K_{C}-D\right)\right)>0$, then $\operatorname{deg}\left(K_{C}-D\right)$ can be computed using a global section instead of a rational section, and therefore must be nonnegative. Consequently, if $\operatorname{deg}(D) \geq$ $2 g-1$, then $\operatorname{deg}\left(K_{C}-D\right)<0$ and hence $H^{0}\left(C, \mathcal{O}\left(K_{C}-D\right)\right)>0$.
Corollary 7. We have $g=0$ if and only if $C \cong \mathbb{P}_{K}^{1}$.
Proof. If $C \cong \mathbb{P}_{K}^{1}$, then $\operatorname{deg}(\Omega)=-2$ because the rational section $d x$ has a double pole at infinity (by writing it as $d\left(y^{-1}\right)=-y^{-2} d y$ for $y=x^{-1}$). This implies $g=0$.

Conversely, if $g=0$, then choose two distinct points P, Q on C. The divisor $D=(P)-(Q)$ is of degree $0 \geq 2 g-1$, so $\operatorname{dim}_{K} H^{0}(C, \mathcal{O}(D))=1$. Any nonzero element of this space is a rational function on C with only one simple zero and one simple pole, so it gives rise to a map $C \rightarrow \mathbb{P}_{K}^{1}$ which is finite of degree 1 , and hence an isomorphism.
Corollary 8. A smooth curve of degree d in \mathbb{P}_{K}^{2} has genus $\binom{d-1}{2}$.
Proof. For $j: C \rightarrow \mathbb{P}_{K}^{2}$ the inclusion, we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}_{K}^{2}}(-d) \rightarrow \mathcal{O}_{\mathbb{P}_{K}^{2}} \rightarrow j_{*} \mathcal{O}_{C} \rightarrow 0
$$

Taking the associated long exact sequence yields

$$
0=H^{1}\left(\mathbb{P}_{K}^{2}, \mathcal{O}_{\mathbb{P}_{K}^{2}}\right) \rightarrow H^{1}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{2}\left(\mathbb{P}_{K}^{2}, \mathcal{O}_{\mathbb{P}_{K}^{2}}(-d)\right) \rightarrow H^{1}\left(\mathbb{P}_{K}^{2}, \mathcal{O}\right)=0
$$

so this follows from the computation of the cohomology of projective space.
Putting these two corollaries together, we see that a smooth curve of degree $2(\mathrm{a} / \mathrm{k} / \mathrm{a}$ a conic in \mathbb{P}_{K}^{2}) is always isomorphic to \mathbb{P}_{K}^{1}. This fact is classical: if you project from \mathbb{P}_{K}^{2} away from a point on C, you get a well-defined isomorphism $C \cong \mathbb{P}_{K}^{1}$. By contrast, a smooth curve of degree 3 has genus 1 ; such a curve (once you fix a point to use as the origin of the group law) is an example of an elliptic curve.

2 More on curves of low genus

