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Schemes

In the previous lecture, we defined the structure sheaf on Spec(R) for an arbitrary ring
R. In this lecture, we describe how to glue this construction together to obtain schemes.

1 Ringed spaces

A ringed space is a topological space equipped with a sheaf of rings. This includes the usual
suspects: manifolds, C∞ manifolds, complex varieties, algebraic varieties from last quarter,
and affine schemes.

We would like to form a category RS of ringed spaces, but for this we need to define the
concept of a morphism (X,OX) → (Y,OY ) of ringed spaces. Clearly this should include a
continuous map f : X → Y of topological spaces, plus some extra relation between OX and
OY . But what should that be?

Our goal is for a ring homomorphism R → S to give rise to a morphism Spec(S) →
Spec(R) of ringed spaces; this suggests that we should be trying to specify a morphism from
OY to OX . But these are sheaves on different spaces! In order to proceed further, we need
to back up and define some constructions that move sheaves from one space to another.

2 Direct and inverse images

Let f : X → Y be a continuous map of topological spaces. For F a sheaf (say of sets) on
X, define the direct image f∗F to be the presheaf on Y given by the formula

(f∗F)(U) = F(f−1(U));

this is easily seen to be a sheaf.
The operation f∗ amounts to a restriction of F from the category of sheaves on X to the

category of sheaves on Y . Correspondingly, it should come with an associated promotion
operation in the other direction, which for temporarily opaque reasons we will call f−1 rather
than f ∗. These two operations should form an adjoint pair : for F a sheaf on X and G a
sheaf on Y , we should have a distinguished isomorphism

MorX(f−1G,F) ∼= MorX(G, f∗F).

This suggests a first guess as to the definition of f−1G: for U ⊆ X an open subset, we would
like to take (f−1G)(U) to be G(f(U)). Of course this doesn’t make sense because f(U) is
not an open set, but we can define it to be the stalk of G at the set f(U), i.e., the direct
limit of G(V ) over all open subsets V of Y containing f(U).

So far so good, but this is still only a presheaf, not in general a sheaf. Fortunately, there is
a natural way to turn a presheaf into sheaf, called sheafification; this is itself the left adjoint
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of the forgetful functor from sheaves to presheaves. Concretely, given a presheaf F on X,
the sheafification is the sheaf whose values on U is the set of functions s : U → tx∈XFx such
that s(x) ∈ Fx for each x ∈ U and s is locally the function associated to a section of F .

3 The category of ringed spaces

We can now define the concept of a morphism (X,OX) → (Y,OY ) of ringed spaces: it is
a continuous map f : X → Y of locally ringed spaces plus a morphism f ] : OY → f∗OX

of sheaves of rings. Note that by adjointness, we can also interpret f ] as a morphism
f−1OY → OX . Let RS be the category of ringed spaces.

For example, let ϕ : R→ S be a morphism of rings, and consider the map f : Spec(S)→
Spec(R) of topological spaces. I claim this can be promoted in a natural way to a morphism
of locally ringed spaces. To begin with, note that for each p ∈ Spec(S), ϕ induces a map
ϕp : Rf(p) → Sp. Next, for U ⊂ Spec(R) an open set, we must construct a homomorphism
f ] : OSpec(R)(U) → OSpec(S)(f

−1(U)) of rings. In fact, the choice is forced: if we view an
element ofOSpec(R)(U) as a certain function U → tp∈URp, then we may write down a function
f−1(U)→ tp∈f−1(U)Sp that takes a point p ∈ f−1(U), projects to U , maps to Rf(p), and then
applies ϕp. I leave it to you to see that this function indeed belongs to OSpec(S)(f

−1(U)).
That gives the map of ringed spaces.

To sum up, there is a natural contravariant functor Ring → RS taking R to Spec(R).
This functor is faithful : every morphism of rings R → S is uniquely determined by the
corresponding morphism (Spec(S),OSpec(S)) → (Spec(R),OSpec(R)). Namely, for any open
subset U ⊆ Spec(R), f ] induces a ring homomorphism OSpec(R)(U) → OSpec(S)(f

−1(U)); by
taking U = Spec(R) and using the first fundamental theorem of schemes, we get back the
map R→ S.

However, this functor is not fully faithful : not every morphism (Spec(S),OSpec(S)) →
(Spec(R),OSpec(R)) of ringed spaces is derived from a ring homomorphism R → S in this
fashion. See for instance Hartshorne, Example II.2.3.3.

4 Locally ringed spaces

The problem here is that the definition of a ringed space misses a key feature of all of our
standard examples. This is perhaps most obvious in the case of affine schemes: the stalk of
the structure sheaf O at a point p ∈ Spec(R) is the localization Rp, which in particular is a
local ring, a ring with a unique maximal ideal (namely the ideal generated by p).

Similarly, let O be the sheaf of continuous real-valued functions on an arbitrary topo-
logical space X. For x ∈ X, the stalk Ox surjects onto R via evaluation at x. Let I be
the kernel of this map. Any element of Ox − I is represented by a continuous function
f : U → R for some open neighborhood U of x in X with the property that f(x) 6= 0. Since
f is continuous, we can find an open neighborhood V of x in U such that f(y) 6= 0 for all
y ∈ V ; consequently, f has a multiplicative inverse in Ox. It follows that Ox is a local ring
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with maximal ideal I.
To absorb this observation, we define a locally ringed space to be a topological space X

equipped with a sheaf of rings O such that for each x ∈ X, the stalk Ox is a local ring. A
morphism (X,OX)→ (Y,OY ) of locally ringed spaces will be a special kind of morphism of
underlying locally ringed spaces. Given a morphism f of ringed spaces, for x ∈ X, y ∈ Y
with f(x) = y, f ] induces a map OY,y → (f∗OX)y → OX,x of stalks. Since these are both
local rings, it makes sense to insist that this be a local homomorphism, i.e., the inverse of
the maximal ideal of the target is the maximal ideal of the source (rather than some smaller
prime ideal). Let LRS denote the resulting category of locally ringed spaces.

In particular, any morphism Spec(S) → Spec(R) of ringed spaces coming from a mor-
phism R → S of rings is also a morphism of locally ringed spaces, because the map ϕp is a
local homomorphism. In the other direction, we have the following.

Theorem 1 The functor Ring → LRS is fully faithful. That is, for any two rings R, S,
every morphism Spec(S) → Spec(R) of locally ringed spaces comes from a homomorphism
R→ S of rings (which we already know to be unique).

In fact, an even stronger statement is true.

Theorem 2 Let R be a ring and let (X,OX) be a locally ringed space. Then the map

MorLRS(X, Spec(R))→ MorRing(R,OX(X))

obtained by taking global sections is a bijection.

To prove this, we build the functor the other way. We start with the underlying map of sets.
For x ∈ X, we are given a map ϕ : R → OX(X), which then maps to the stalk OX,x. The
latter is a local ring, so it has a unique maximal ideal px; that ideal contracts to a point
f(x) ∈ Spec(R). That defines a map f : X → Spec(R). (Note that we already used the fact
that we are working in LRS rather than RS.)

We next check that this map is continuous. It suffices to check that every distinguished
open subset D(g) ⊆ Spec(R) has inverse image which is open in X. Suppose x ∈ X is in
this inverse image; this means that in the previous paragraph, g /∈ ϕ−1(px) or equivalently
ϕ(g) /∈ px. Since OX,x is a local ring, this means that ϕ(g) is a unit in OX,x, so it lifts to an
invertible section of OX,x on some open neighborhood of x; the latter is then contained in
the inverse image of D(g).

We next construct the morphism of ringed spaces; this should be a homomorphism
OSpec(R) → f∗OX . It is enough to specify the effect on sections over a general distinguished
open set D(g), i.e., the map Rg → OX(f−1(D(g))). This map is determined by the map
R → OX(X) → OX(f−1(D(g))) plus the fact that the image of g in OX(X) is invertible
in OX(f−1(D(g))) (because it is invertible in OX,x for each x ∈ f−1(D(g)) by the previous
paragraph).

We next note that this is also a morphism of locally ringed spaces, because the map
Rf(x) → OX,x is by construction a local homomorphism.
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Finally, we need to check that the compositions both ways give the identity. It is easy to
see that starting with a morphism in Ring and then going to and from LRS gives the same
initial morphism. If we instead start with a morphism in LRS and then cycle back, we may
see that we get the same initial morphism by seeing that we end up with the same maps of
stalks.

5 Schemes

A scheme is a locally ringed space which is covered by open subspaces isomorphic to affine
schemes. Note that this implies that every point has a neighborhood basis consisting of
affine schemes.

In light of the preceding theorems, there is no need to specially define morphisms of
schemes: we simply take them to be morphisms of the underlying locally ringed spaces!
This simplifies the theory considerably.

As an example, we define the projective line over an arbitrary ring R. Consider the affine
schemes

U1 = SpecR[t], U2 = SpecR[t−1], U3 = SpecR[t, t−1];

then U3 is isomorphic to the distinguished open subset D(t) of U1 and with the distinguished
open subset D(t−1) of U2. Let P1

R be the union of U1 and U2 along U3; then P1
R inherits

the structure of a scheme. Note that the difference P1
R − U1 consists of the subspace of

U2 corresponding to V (t−1); this is a whole copy of SpecR, not just a single point. This
corresponds to the geometric intuition that P1

R is actually a family of projective spaces
indexed by the points of Spec(R); we’ll add more content to that observation later. One point
to observe now is that by the above theorem, the maps R→ R[t], R→ R[t−1], R→ R[t, t−1]
give rise to a morphism of schemes P1

R → Spec(R), called the structure morphism.

6 Varieties and schemes

Let K be an algebraically closed field. Let R be a reduced finitely generated K-algebra. Let
Maxspec(R) denote the set of maximal ideals of R; by the Nullstellensatz, these all have
residue field K. There is an obvious inclusion j : Maxspec(R) ⊆ Spec(R) with dense image;
the Zariski topology on Maxspec(R) is just the subspace topology for this inclusion.

Last quarter, we constructed a sheaf of regular functions on Maxspec(R), giving the latter
the structure of an affine variety. This is just j−1OSpec(R), so j gives rise to a morphism of
locally ringed spaces.

A variety over K is a locally ringed space covered by open subspaces which are affine
varieties over K. Well, almost: every affine variety as defined above comes with a map
Maxspec(R)→ Spec(K), and we insist that a variety also come with such a morphism.

Similarly, a scheme over K is a scheme plus a morphism to Spec(K). These form a
category in which morphisms must commute with the maps to Spec(K). It is easily checked
(see Hartshorne, Proposition II.2.6) that there is a fully faithful functor from varieties over
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K to schemes over K. Just as above, if W is a variety and X is the corresponding scheme,
then there is a distinguished morphism W → X of locally ringed spaces which restricts to a
bijection of W to the set of closed points of X.
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