Math 203B: Algebraic Geometry UCSD, winter 2016, Kiran S. Kedlaya Cohomology of quasicoherent sheaves on projective spaces

We now focus on quasicoherent sheaves on projective spaces.

1 A note on closed subschemes

Suppose for a moment that $j: X \to W$ is a closed immersion. We have already discussed the fact that if \mathcal{F} is a quasicoherent sheaf on X, then $j_*\mathcal{F}$ is a quasicoherent sheaf on W. In fact, we can say a bit more.

- **Theorem 1.** (a) The functor j_* defines an equivalence of categories between quasicoherent sheaves on X and quasicoherent sheaves on W annihilated by $\mathcal{I} = \ker(\mathcal{O}_W \to f_*\mathcal{O}_X)$.
 - (b) For \mathcal{F} a quasicoherent sheaf on W, the groups $H^i(X, \mathcal{F})$ and $H^i(W, j_*\mathcal{F})$ are canonically isomorphic for all i.

Proof. Based on previous statements, both results are easily seen to be true if W is affine. From this, one may deduce a comparison for Čech cohomology groups, and then for sheaf cohomology using spectral sequences.

For this reason, statements I make about \mathbb{P}_R^d will typically have immediate consequences for closed subschemes of \mathbb{P}_R^d .

2 A useful exact sequence

When looking at cohomology on \mathbb{P}_R^d , we will frequently use the following observation related to the previous one. Let H be a hyperplane in $X = \mathbb{P}_R^d$, e.g., the zero locus of x_i for some $i \in \{0, \ldots, d\}$. Then for $j : H \to \mathbb{P}_R^d$ the corresponding closed immersion, we have an exact sequence

$$0 \to \mathcal{O}_X(-1) \to \mathcal{O}_X \to j_*\mathcal{O}_H \to 0.$$

Twisting, we get exact sequences

$$0 \to \mathcal{O}_X(n-1) \to \mathcal{O}_X(n) \to j_*\mathcal{O}_H(n) \to 0.$$

(In fact, this sequence is easier to see when $n \gg 0$.)

3 Cohomology of twisting sheaves: the case d = 1

For \mathcal{F} a quasicoherent sheaf on \mathbb{P}^1_R , we can compute $H^0(\mathbb{P}^1_R, \mathcal{F})$ and $H^1(\mathbb{P}^1_R, \mathcal{F})$ as the kernel and cokernel of the map

$$\mathcal{F}(D_+(x_0)) \times \mathcal{F}(D_+(x_1)) \to \mathcal{F}(D_+(x_0x_1)), \qquad (s_0, s_1) \mapsto s_0 - s_1,$$

and $H^i(\mathbb{P}^1_R, \mathcal{F}) = 0$ for all i > 0. Let's do this for $\mathcal{F} = \mathcal{O}(n)$, in which case the map is

$$x_0^n R\left[\frac{x_1}{x_0}\right] \oplus x_1^n R\left[\frac{x_0}{x_1}\right] \to x_0^n R\left[\frac{x_1}{x_0}, \frac{x_0}{x_1}\right]$$

We already have observed that the kernel is the set of homogeneous polynomials of degreee n in x_0, x_1 , which is nonzero if and only if $n \ge 0$. As for the cokernel, we can write it as $x_0^{-1}x_1^{-1}$ times the set of homogeneous polynomials of degree n-2 in x_0^{-1}, x_1^{-1} ; in particular, it is nonzero if and only if $n \le -2$. To summarize, $H^0(X, \mathcal{O}(n))$ and $H^1(X, \mathcal{O}(n))$ are free modules of respective ranks $\max\{n+1, 0\}$ and $\max\{1-n, 0\}$.

4 Cohomology of twisting sheaves: the general case

Let's again take $\mathcal{F} = \mathcal{O}(n)$ but now $X = \mathbb{P}_R^d$ with $d \ge 1$ arbitrary. We again know that $H^0(X, \mathcal{O}(n))$ is the set of homogeneous polynomials of degree n, which is zero if n < 0 and otherwise is free of rank $\binom{n+d}{d}$. (Fast way to remember this binomial coefficient: write each monomial as $x_0 \cdots x_0 \times x_1 \cdots \times x_1 \cdots$, then note that the monomials correspond to the choice of the positions of d multiplication signs in a string of length n + d.)

Meanwhile, $H^d(\mathbb{P}^d_R, \mathcal{O}(n))$ is the cokernel of the map

$$\prod_{i=0}^{d} \mathcal{O}(n)(D_{+}(x_{0}\cdots \widehat{x_{i}}\cdots x_{d})) \to \mathcal{O}(n)(D_{+}(x_{0}\cdots x_{d})),$$

and can be written as $x_0^{-1} \dots x_d^{-1}$ times the set of homogeneous polynomials of degree n-d-1 in $x_0^{-1}, \dots, x_d^{-1}$. In particular, it is zero if $n \ge -d$ and otherwise is free of rank $\binom{-n-1}{d}$.

What about the terms in the middle? We claim that $H^i(\mathbb{P}^d_R, \mathcal{O}(n)) = 0$ for all 0 < i < dand all n. We'll complete the proof of this later; for the moment, let me illustrate the case d = 2 using the exact sequence

$$\begin{split} 0 &\to H^0(\mathbb{P}^2_R, \mathcal{O}(n-1)) \to H^0(\mathbb{P}^2_R, \mathcal{O}(n)) \to H^0(\mathbb{P}^1_R, \mathcal{O}(n)) \\ &\to H^1(\mathbb{P}^2_R, \mathcal{O}(n-1)) \to H^1(\mathbb{P}^2_R, \mathcal{O}(n)) \to H^1(\mathbb{P}^1_R, \mathcal{O}(n)) \\ &\to H^2(\mathbb{P}^2_R, \mathcal{O}(n-1)) \to H^2(\mathbb{P}^2_R, \mathcal{O}(n)) \to 0. \end{split}$$

For $n \ge 0$, this sequence truncates to

$$0 \to H^0(\mathbb{P}^2_R, \mathcal{O}(n-1)) \to H^0(\mathbb{P}^2_R, \mathcal{O}(n)) \to H^0(\mathbb{P}^1_R, \mathcal{O}(n)) \\ \to H^1(\mathbb{P}^2_R, \mathcal{O}(n-1)) \to H^1(\mathbb{P}^2_R, \mathcal{O}(n)) \to 0,$$

and by inspection we see that $H^0(\mathbb{P}^2_R, \mathcal{O}(n)) \to H^0(\mathbb{P}^1_R, \mathcal{O}(n))$ is surjective, so we deduce that $H^1(\mathbb{P}^2_R, \mathcal{O}(n-1)) \cong H^1(\mathbb{P}^2_R, \mathcal{O}(n))$. For $n \leq 0$, a similar truncation on the other end yields $H^1(\mathbb{P}^2_R, \mathcal{O}(n-1)) \cong H^1(\mathbb{P}^2_R, \mathcal{O}(n))$.

In other words, if we take the sheaf $\mathcal{F} = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}(n)$, then multiplication by x_2 defines a bijection on $H^1(\mathbb{P}^2_R, \mathcal{F})$. Now view $S = \bigoplus_{n \in \mathbb{Z}} H^1(\mathbb{P}^2_R, \mathcal{F})$ as a module over $R[x_0, x_1, x_2]$. On one hand, multiplication by x_2 on S is bijective. On the other hand, if we localize at x_2 , we get (a bunch of copies of) the cohomology of \mathcal{F} on $D_+(x_i)$ computed using the covering $D_+(x_0x_2), D_+(x_1x_2), D_+(x_2)$; and we know that's zero because $D_+(x_i)$ is an affine scheme. These two facts combine to imply that S = 0, whence all of the $H^1(\mathbb{P}^2_R, \mathcal{O}(n))$ vanish.

5 Applications to coherent sheaves

All of these are due to Serre.

Theorem 2. Let $j : X \to \mathbb{P}^d_R$ be a closed immersion. Let \mathcal{F} be a coherent (quasicoherent locally finitely generated) sheaf on X. Then there exists $n_0 \in \mathbb{Z}$ such that for all $n \ge n_0$ and all i > 0, $H^i(X, \mathcal{F}(n)) = 0$.

Proof. By replacing \mathcal{F} with $j_*\mathcal{F}$, we reduce immediately to the case $X = \mathbb{P}^d_R$. We proceed by descending induction on i, noting that the claim is automatic if i > d since we can compute sheaf cohomology using the Čech complex corresponding to the cover by $D_+(x_0), \ldots, D_+(x_d)$.

By the previous theorem of Serre, we can find an index $n_1 \in \mathbb{Z}$ such that $\mathcal{F}(n_1)$ is generated by finitely many global sections; that is, we can write down an exact sequence

$$0 \to \mathcal{G} \to \mathcal{O}^{\oplus k} \to \mathcal{F}(n_1) \to 0$$

for some $k \ge 0$. Twisting, we obtain

$$0 \to \mathcal{G}(n-n_1) \to \mathcal{O}(n-n_1)^{\oplus k} \to \mathcal{F}(n) \to 0$$

In the resulting exact sequence

$$H^{i}(\mathbb{P}^{d}_{R}, \mathcal{O}(n-n_{1})^{\oplus k}) \to H^{i}(\mathbb{P}^{d}_{R}, \mathcal{F}(n)) \to H^{i+1}(\mathbb{P}^{d}_{R}, \mathcal{G}(n-n_{1})) \to H^{i+1}(\mathbb{P}^{d}_{R}, \mathcal{O}(n-n_{1})^{\oplus k})$$

the outside terms vanish as soon as $n - n_1 \ge -d$ (this is only really at issue when i + 1 = d). Meanwhile, by the induction hypothesis, $H^{i+1}(\mathbb{P}^d_R, \mathcal{G}(n-n_1))$ vanishes for n sufficiently large; it follows that $H^i(\mathbb{P}^d_R, \mathcal{F}(n))$ also vanishes for i sufficiently large. \Box

Corollary 3. Let $j : X \to \mathbb{P}^d_R$ be a closed immersion. Let \mathcal{F} be a coherent (quasicoherent locally finitely generated) sheaf on X. Then for any exact sequence

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

of sheaves of modules, there exists $n_0 \in \mathbb{Z}$ such that for all $n \ge n_0$ and all i > 0,

$$0 \to H^0(X, \mathcal{F}(n)) \to H^0(X, \mathcal{G}(n)) \to H^0(X, \mathcal{H}(n)) \to 0$$

is exact.

Theorem 4. Suppose that the ring R is noetherian. Let $j : X \to \mathbb{P}^d_R$ be a closed immersion. Let \mathcal{F} be a coherent (quasicoherent locally finitely generated) sheaf on X. Then the groups $H^i(X, \mathcal{F})$ are finitely generated R-modules for all $i \geq 0$. *Proof.* Yet again, we reduce to the case $X = \mathbb{P}_R^d$. Again, we operate by descending induction on *i*, the case i > d being clear. For some *n*, there exists an exact sequence

$$0 \to \mathcal{G}(-n) \to \mathcal{O}(-n)^{\oplus k} \to \mathcal{F} \to 0.$$

In the resulting exact sequence

$$H^{i}(\mathbb{P}^{d}_{R}, \mathcal{O}(-n)^{\oplus k}) \to H^{i}(\mathbb{P}^{d}_{R}, \mathcal{F}) \to H^{i+1}(\mathbb{P}^{d}_{R}, \mathcal{G}(-n)) \to H^{i+1}(\mathbb{P}^{d}_{R}, \mathcal{O}^{\oplus k}),$$

the outside terms are finitely generated *R*-modules by calculation, while $H^{i+1}(\mathbb{P}^d_R, \mathcal{G}(-n))$ is a finitely generated *R*-module by the induction hypothesis. It follows that $H^i(\mathbb{P}^d_R, \mathcal{F})$ is a finitely generated *R*-module, completing the induction. \Box