Math 203B: Algebraic Geometry
 UCSD, winter 2016, Kiran S. Kedlaya
 Cohomology of quasicoherent sheaves on projective spaces

We now focus on quasicoherent sheaves on projective spaces.

1 A note on closed subschemes

Suppose for a moment that $j: X \rightarrow W$ is a closed immersion. We have already discussed the fact that if \mathcal{F} is a quasicoherent sheaf on X, then $j_{*} \mathcal{F}$ is a quasicoherent sheaf on W. In fact, we can say a bit more.

Theorem 1. (a) The functor j_{*} defines an equivalence of categories between quasicoherent sheaves on X and quasicoherent sheaves on W annihilated by $\mathcal{I}=\operatorname{ker}\left(\mathcal{O}_{W} \rightarrow f_{*} \mathcal{O}_{X}\right)$.
(b) For \mathcal{F} a quasicoherent sheaf on W, the groups $H^{i}(X, \mathcal{F})$ and $H^{i}\left(W, j_{*} \mathcal{F}\right)$ are canonically isomorphic for all i.

Proof. Based on previous statements, both results are easily seen to be true if W is affine. From this, one may deduce a comparison for Čech cohomology groups, and then for sheaf cohomology using spectral sequences.

For this reason, statements I make about \mathbb{P}_{R}^{d} will typically have immediate consequences for closed subschemes of \mathbb{P}_{R}^{d}.

2 A useful exact sequence

When looking at cohomology on \mathbb{P}_{R}^{d}, we will frequently use the following observation related to the previous one. Let H be a hyperplane in $X=\mathbb{P}_{R}^{d}$, e.g., the zero locus of x_{i} for some $i \in\{0, \ldots, d\}$. Then for $j: H \rightarrow \mathbb{P}_{R}^{d}$ the corresponding closed immersion, we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow \mathcal{O}_{X} \rightarrow j_{*} \mathcal{O}_{H} \rightarrow 0
$$

Twisting, we get exact sequences

$$
0 \rightarrow \mathcal{O}_{X}(n-1) \rightarrow \mathcal{O}_{X}(n) \rightarrow j_{*} \mathcal{O}_{H}(n) \rightarrow 0
$$

(In fact, this sequence is easier to see when $n \gg 0$.)

3 Cohomology of twisting sheaves: the case $d=1$

For \mathcal{F} a quasicoherent sheaf on \mathbb{P}_{R}^{1}, we can compute $H^{0}\left(\mathbb{P}_{R}^{1}, \mathcal{F}\right)$ and $H^{1}\left(\mathbb{P}_{R}^{1}, \mathcal{F}\right)$ as the kernel and cokernel of the map

$$
\mathcal{F}\left(D_{+}\left(x_{0}\right)\right) \times \mathcal{F}\left(D_{+}\left(x_{1}\right)\right) \rightarrow \mathcal{F}\left(D_{+}\left(x_{0} x_{1}\right)\right), \quad\left(s_{0}, s_{1}\right) \mapsto s_{0}-s_{1},
$$

and $H^{i}\left(\mathbb{P}_{R}^{1}, \mathcal{F}\right)=0$ for all $i>0$. Let's do this for $\mathcal{F}=\mathcal{O}(n)$, in which case the map is

$$
x_{0}^{n} R\left[\frac{x_{1}}{x_{0}}\right] \oplus x_{1}^{n} R\left[\frac{x_{0}}{x_{1}}\right] \rightarrow x_{0}^{n} R\left[\frac{x_{1}}{x_{0}}, \frac{x_{0}}{x_{1}}\right] .
$$

We already have observed that the kernel is the set of homogeneous polynomials of degreee n in x_{0}, x_{1}, which is nonzero if and only if $n \geq 0$. As for the cokernel, we can write it as $x_{0}^{-1} x_{1}^{-1}$ times the set of homogeneous polynomials of degree $n-2$ in x_{0}^{-1}, x_{1}^{-1}; in particular, it is nonzero if and only if $n \leq-2$. To summarize, $H^{0}(X, \mathcal{O}(n))$ and $H^{1}(X, \mathcal{O}(n))$ are free modules of respective ranks $\max \{n+1,0\}$ and $\max \{1-n, 0\}$.

4 Cohomology of twisting sheaves: the general case

Let's again take $\mathcal{F}=\mathcal{O}(n)$ but now $X=\mathbb{P}_{R}^{d}$ with $d \geq 1$ arbitrary. We again know that $H^{0}(X, \mathcal{O}(n))$ is the set of homogeneous polynomials of degree n, which is zero if $n<0$ and otherwise is free of rank $\binom{n+d}{d}$. (Fast way to remember this binomial coefficient: write each monomial as $x_{0} \cdots x_{0} \times x_{1} \cdots \times x_{1} \cdots$, then note that the monomials correspond to the choice of the positions of d multiplication signs in a string of length $n+d$.)

Meanwhile, $H^{d}\left(\mathbb{P}_{R}^{d}, \mathcal{O}(n)\right)$ is the cokernel of the map

$$
\prod_{i=0}^{d} \mathcal{O}(n)\left(D_{+}\left(x_{0} \cdots \widehat{x_{i}} \cdots x_{d}\right)\right) \rightarrow \mathcal{O}(n)\left(D_{+}\left(x_{0} \cdots x_{d}\right)\right)
$$

and can be written as $x_{0}^{-1} \ldots x_{d}^{-1}$ times the set of homogeneous polynomials of degree $n-d-1$ in $x_{0}^{-1}, \ldots, x_{d}^{-1}$. In particular, it is zero if $n \geq-d$ and otherwise is free of $\operatorname{rank}\binom{-n-1}{d}$.

What about the terms in the middle? We claim that $H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{O}(n)\right)=0$ for all $0<i<d$ and all n. We'll complete the proof of this later; for the moment, let me illustrate the case $d=2$ using the exact sequence

$$
\begin{gathered}
0 \rightarrow H^{0}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \rightarrow H^{0}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right) \rightarrow H^{0}\left(\mathbb{P}_{R}^{1}, \mathcal{O}(n)\right) \\
\rightarrow H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{R}^{1}, \mathcal{O}(n)\right) \\
\quad \rightarrow H^{2}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \rightarrow H^{2}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right) \rightarrow 0 .
\end{gathered}
$$

For $n \geq 0$, this sequence truncates to

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \rightarrow H^{0}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right) \rightarrow H^{0}\left(\mathbb{P}_{R}^{1}, \mathcal{O}(n)\right) \\
& \rightarrow H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right) \rightarrow 0
\end{aligned}
$$

and by inspection we see that $H^{0}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right) \rightarrow H^{0}\left(\mathbb{P}_{R}^{1}, \mathcal{O}(n)\right)$ is surjective, so we deduce that $H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \cong H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right)$. For $n \leq 0$, a similar truncation on the other end yields $H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n-1)\right) \cong H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right)$.

In other words, if we take the sheaf $\mathcal{F}=\bigoplus_{n \in \mathbb{Z}} \mathcal{O}(n)$, then multiplication by x_{2} defines a bijection on $H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{F}\right)$. Now view $S=\bigoplus_{n \in \mathbb{Z}} H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{F}\right)$ as a module over $R\left[x_{0}, x_{1}, x_{2}\right]$.

On one hand, multiplication by x_{2} on S is bijective. On the other hand, if we localize at x_{2}, we get (a bunch of copies of) the cohomology of \mathcal{F} on $D_{+}\left(x_{i}\right)$ computed using the covering $D_{+}\left(x_{0} x_{2}\right), D_{+}\left(x_{1} x_{2}\right), D_{+}\left(x_{2}\right)$; and we know that's zero because $D_{+}\left(x_{i}\right)$ is an affine scheme. These two facts combine to imply that $S=0$, whence all of the $H^{1}\left(\mathbb{P}_{R}^{2}, \mathcal{O}(n)\right)$ vanish.

5 Applications to coherent sheaves

All of these are due to Serre.
Theorem 2. Let $j: X \rightarrow \mathbb{P}_{R}^{d}$ be a closed immersion. Let \mathcal{F} be a coherent (quasicoherent locally finitely generated) sheaf on X. Then there exists $n_{0} \in \mathbb{Z}$ such that for all $n \geq n_{0}$ and all $i>0, H^{i}(X, \mathcal{F}(n))=0$.

Proof. By replacing \mathcal{F} with $j_{*} \mathcal{F}$, we reduce immediately to the case $X=\mathbb{P}_{R}^{d}$. We proceed by descending induction on i, noting that the claim is automatic if $i>d$ since we can compute sheaf cohomology using the Čech complex corresponding to the cover by $D_{+}\left(x_{0}\right), \ldots, D_{+}\left(x_{d}\right)$.

By the previous theorem of Serre, we can find an index $n_{1} \in \mathbb{Z}$ such that $\mathcal{F}\left(n_{1}\right)$ is generated by finitely many global sections; that is, we can write down an exact sequence

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{O}^{\oplus k} \rightarrow \mathcal{F}\left(n_{1}\right) \rightarrow 0
$$

for some $k \geq 0$. Twisting, we obtain

$$
0 \rightarrow \mathcal{G}\left(n-n_{1}\right) \rightarrow \mathcal{O}\left(n-n_{1}\right)^{\oplus k} \rightarrow \mathcal{F}(n) \rightarrow 0
$$

In the resulting exact sequence

$$
H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{O}\left(n-n_{1}\right)^{\oplus k}\right) \rightarrow H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{F}(n)\right) \rightarrow H^{i+1}\left(\mathbb{P}_{R}^{d}, \mathcal{G}\left(n-n_{1}\right)\right) \rightarrow H^{i+1}\left(\mathbb{P}_{R}^{d}, \mathcal{O}\left(n-n_{1}\right)^{\oplus k}\right)
$$

the outside terms vanish as soon as $n-n_{1} \geq-d$ (this is only really at issue when $i+1=d$). Meanwhile, by the induction hypothesis, $H^{i+1}\left(\mathbb{P}_{R}^{d}, \mathcal{G}\left(n-n_{1}\right)\right)$ vanishes for n sufficiently large; it follows that $H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{F}(n)\right)$ also vanishes for i sufficiently large.

Corollary 3. Let $j: X \rightarrow \mathbb{P}_{R}^{d}$ be a closed immersion. Let \mathcal{F} be a coherent (quasicoherent locally finitely generated) sheaf on X. Then for any exact sequence

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0
$$

of sheaves of modules, there exists $n_{0} \in \mathbb{Z}$ such that for all $n \geq n_{0}$ and all $i>0$,

$$
0 \rightarrow H^{0}(X, \mathcal{F}(n)) \rightarrow H^{0}(X, \mathcal{G}(n)) \rightarrow H^{0}(X, \mathcal{H}(n)) \rightarrow 0
$$

is exact.
Theorem 4. Suppose that the ring R is noetherian. Let $j: X \rightarrow \mathbb{P}_{R}^{d}$ be a closed immersion. Let \mathcal{F} be a coherent (quasicoherent locally finitely generated) sheaf on X. Then the groups $H^{i}(X, \mathcal{F})$ are finitely generated R-modules for all $i \geq 0$.

Proof. Yet again, we reduce to the case $X=\mathbb{P}_{R}^{d}$. Again, we operate by descending induction on i, the case $i>d$ being clear. For some n, there exists an exact sequence

$$
0 \rightarrow \mathcal{G}(-n) \rightarrow \mathcal{O}(-n)^{\oplus k} \rightarrow \mathcal{F} \rightarrow 0
$$

In the resulting exact sequence

$$
H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{O}(-n)^{\oplus k}\right) \rightarrow H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{F}\right) \rightarrow H^{i+1}\left(\mathbb{P}_{R}^{d}, \mathcal{G}(-n)\right) \rightarrow H^{i+1}\left(\mathbb{P}_{R}^{d}, \mathcal{O}^{\oplus k}\right)
$$

the outside terms are finitely generated R-modules by calculation, while $H^{i+1}\left(\mathbb{P}_{R}^{d}, \mathcal{G}(-n)\right)$ is a finitely generated R-module by the induction hypothesis. It follows that $H^{i}\left(\mathbb{P}_{R}^{d}, \mathcal{F}\right)$ is a finitely generated R-module, completing the induction.

