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Sheaves in the language of categories

Before giving the construction of schemes, let me take a moment to briefly recall the
definition of sheaves. In the process, I would like to take the opportunity to bake in a little
bit of the language of categories; this will both give me an excuse to take this a bit slowly,
and provide an opportunity to get the language set up right for later use (e.g., when we start
talking about sheaves of modules instead of rings).

Categories

A category consists of:

• a “collection” (more on this below) of sets, called the objects of the category;

• for every pair X, Y of (not necessarily) distinct objects, a set Mor(X, Y ), called the
morphisms from X to Y ;

• for every object X, an element idX ∈ Mor(X,X), called the identity morphism on X;

• for every triple X, Y, Z of objects, a binary operation

◦ : Mor(Y, Z)×Mor(X, Y )→ Mor(X,Z),

called composition, which is associative and has the id∗ as identities on either side.

The canonical example is supposed to be the category Set of all sets, in which Mor(X, Y )
is the set of all functions from X to Y , idX is the usual identity morphism, and ◦ is the
usual composition of functions (whence the order of the factors). This example illustrates a
foundational nuisance: recall that according to the usual rules of set theory, there is no set
of all sets!1 One can finesse this by defining a concept of classes of sets, which obey most
but not all of the axioms of sets (notably omitting the power axiom). This is sufficient for
our purposes.2

While categories in principle could be defined totally abstractly, using more or less ar-
bitrary associative binary operations, the examples we will have most use for have as their
objects just sets equipped with certain extra structures, and for morphisms the maps between
those sets that respect the extra structures. For example:

1The usual explanation for this is Russell’s paradox: if there were a set X of all sets, then one could form
Y = {U ∈ X : U /∈ U} for which neither Y ∈ Y nor Y /∈ Y holds. A fancier explanation uses Cantor’s
diagonalization theorem: for no set X does there exist a bijection between X and its power set P (X), but
if X were the set of all sets such a bijection would exist by the Schröder-Bernstein construction.

2What this doesn’t let you do is define, say, a category of all categories. There are good reasons to want
to do this, especially in algebraic topology, but for this one must build more of a hierarchy of set-like objects
and develop a theory of ∞-categories.
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• Ab: abelian groups, group homomorphisms;

• Ring: rings, ring homomorphisms;

• Top: topological spaces, continuous maps.

This observation naturally leads us also to the analogue of a “function between cate-
gories”, which is called a functor. Given two categories C1, C2, a covariant functor F : C1 → C2
consists of the following “functions” (again modulo set-theoretic difficulties):

• one assigning to each object X ∈ C1 an object F (X) ∈ C2;

• one assigning to each morphism f ∈ MorC1(X, Y ) a morphism F (f) ∈ MorC2(F (X), F (Y ))
in a fashion preserving identities and composition.

For example, there are “forgetful functors” Ab → Set, Ring → Ab, Top → Set that
retain some underlying structure and forget the rest. One can also define a contravariant
functor that takes MorC1(X, Y ) to MorC2(F (Y ), F (X)); this can be viewed as a covariant
functor from the opposite category of C1 (i.e., the category with the same objects but with
the direction of all morphisms switched) to C2.

Warning:3 Category theory means never having to say two objects are equal. In practice,
two objects which are isomorphic (i.e., there are morphisms both ways which compose both
ways to the respective identities) are treated as if they were “the same.” The catch is, this
only works if you keep track of which isomorphisms you are using, since an object can be
isomorphic to itself in many ways (e.g., permutations of a set). I’ll emphasize this point
the first couple of times it comes up, but after a little while this will hopefully become a
nonissue.

Presheaves and sheaves

Let X be a topological space. Recall that a presheaf of rings F on X consists of the following
data:

• for each open subset U ⊆ X, a ring F(U);

• for each inclusion U ⊆ V of open sets, a homomorphism ResV,U : F(U)→ F(V );

such that:4

• ResU,U is always the identity homomorphism;

• for any inclusions U ⊆ V ⊆ W , ResV,U ◦ResW,V = ResW,U .

3Paraphrased from a quote by Ravi Vakil. If you don’t understand the allusion, ask Wikipedia about
“Love Story.”

4Some authors also require F(∅) = 0, but this is not essential. See below.
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I hope it is now obvious how to restate this definition in the language of categories. Namely,
associate to X a category X whose objects are the open subsets of X, and whose morphisms
are

MorX(U, V ) =

{
{∗} V ⊆ U

∅ V 6⊆ U.

(Note that there is absolutely no ambiguity about how to define composition.) Then a
presheaf of rings is nothing but a contravariant functor from X to Ring. With this in mind,
it is obvious that we can change the target functor to define presheaves of sets, presheaves
of abelian groups, etc.

The standard examples of presheaves of sets are the ones given by fixing another topo-
logical space Y (e.g., the real numbers) and taking F(U) to be the set of continuous maps
U → Y . Such presheaves have the property that the elements of a given F(U) (which we
call sections of F over U) can be constructed locally, i.e., by specifying sections on an open
cover of U which agree on overlaps. We accordingly define a sheaf of sets to be a presheaf
F with the property that for every open subset U ⊆ X and every covering of U by open
subsets {Ui}i∈I , the map

F(U)→
∏
i∈I

F(Ui), s 7→ (ResUi,U(s))i∈I

defines a bijection of F(U) with the set

{(si)i∈I ∈
∏
i∈I

F(Ui) : ResUi∩Uj ,Ui
(si) = ResUi∩Uj ,Uj

(sj) for all i, j ∈ I}.

We may similarly define a sheaf of abelian groups or a sheaf of rings.
By the way, what is F(∅)? Well, the empty set is a subset of X which is covered by

the empty covering, i.e., the covering in which the index set is itself empty. So we must ask
ourselves: what is an empty product in the category of sets (or abelian groups or rings)?
Let’s answer this by thinking categorically, just as we did for a product of two objects. The
product of a bunch of objects Xi indexed by i ∈ I should be an object X with maps X → Xi,
such that a family of maps from some other object Y to each Xi should arise uniquely from
a map Y → X. If I is empty, then X doesn’t have any maps out; the universal condition is
that any object Y provided with no extra structure should map uniquely to X. That is, X
should be a final object in the category, and for sets any one-element set has that property.
(Likewise for abelian groups, the one-element group; and for rings, the zero ring. Note: to
make this work, we have to agree that the zero ring is a ring even though 0 = 1.)

While we will mostly be interested in sheaves, it sometimes will happen that a natural
example of a presheaf does not in fact form a sheaf. There is a natural way to fix this using
an operation called sheafification; we will come back to this later.
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Stalks

In topology, geometry, and analysis, one often has reason to talk about the germ of a
function at a point, i.e., one is interested in the function on some unspecified neighborhood
of the point, and two functions that look the same in a neighborhood of the point should
be considered equal even if they differ someplace far away. This is captured in the theory of
sheaves via the definition of stalks.

Let F be a sheaf of sets on a topological space X. For each x ∈ X, we define the
stalk Fx to be the direct limit of the sets F(U) as U varies among all of the open subsets
of X containing x. In other words, take the disjoint union of all of the F(U), then form
the equivalence relation in which s1 ∈ F(U1) equals s2 ∈ F(U2) if there exists some open
V ⊆ U1 ∩ U2 such that ResV,U1(s1) = ResV,U2(s2).

Note that the stalk carries much more information than the value of a function at a point.
For instance, if F consists of continuous functions to some Y , then two elements of the stalk
Fx are equal only if they are defined by continuous functions which agree not only at x itself,
but on a whole open neighborhood around x.

One may similarly define the stalk of F at any set W ⊆ X, by taking the direct limit of
F(U) as U varies among all of the open subsets of X containing W . Two extreme cases: if
W = {x} this is the stalk at a point we just defined; if W is open, then this just gives F(W )
itself.
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