
Math 203C (Algebraic Geometry), UCSD, spring 2013
Solutions for problem set 1

1. (a) Suppose that f is affine. For x ∈ X, we may determine f−1(x) by pulling back
along the canonical map Specκ(x)→ X. We may thus assume that X = Spec(k)
for k a field. In this case, problem 8 of Math 203B PS 8 asserts that f is finite,
so in particular it has finite fibers.

Suppose that f has finite fibers. For any x ∈ X, f−1(x) is a finite subset of Pnκ(x),
so we can find a hypersurface in Pnκ(x) disjoint from this subset. (Proof: let Z be

the reduced closed subscheme of Pnκ(x) with underlying set f−1(x). For d large,

Γ(Pnκ(x),O(d)) surjects onto Γ(Z,O(d)) ∼= Γ(Z,O), so we may lift the constant

function 1 ∈ Γ(Z,O) to Γ(Pnκ(x),O(d)). This defines a suitable hypersurface.)
This lifts to a hypersurface H in PnU for some open affine neighborhood U of
x in X. But Z = PnU \ H is affine, so f |U factors through a closed immersion
Y ×X U → Z. Hence f is affine.

(b) We may assume X = Spec(R) is affine. Since f is affine, Y = Spec(S) for
S = Γ(Y,OY ) ∼= Γ(X, f∗OY ). But since f is projective and X is noetherian,
Γ(X, f∗OY ) is a finite OY -module. Hence S is a finite R-algebra, proving the
claim.

2. We describe two different constructions. The first construction is to recall that M ,
being finite projective, is locally free, and that the usual trace on a square matrix is
invariant under conjugation. Consequently, the local trace pieces together to give a
well-defined section of the structure sheaf on R, and hence an element of R.

The second construction is to choose a free module F admitting a direct sum decom-
position M ⊕N for some N . For T ∈ HomR(M,M), we may then set Trace(T,M) =
Trace(T⊕0,M⊕N). To see that this does not depend on any choices, note that adding
a free summand to N clearly has no effect. So if M ⊕N ′ ∼= F ′ is another isomorphism,
then

Trace(T ⊕ 0,M ⊕N) = Trace(T ⊕ 0⊕ 0⊕ 0,M ⊕N ⊕M ⊕N ′)
= Trace(T ⊕ 0⊕ 0⊕ 0,M ⊕N ′ ⊕M ⊕N)

= Trace(T ⊕ 0,M ⊕N ′).

3. Note that the universal property need only be checked in the case where X ′0 is defined
by an ideal I of R with square zero.

(a) We prove locality on the target, the argument for locality on the source being
similar. In one direction, if U ⊆ X is an open subscheme, then we can test
the formally ramified property for Y ×X U → U with the original diagram, by
considering only maps X ′0 → Y factoring through Y ×X U . In the other direction,
if {Ui}i∈I is an open covering of X, we can test the formally unramified property
by restricting to each Y ×X Ui and glueing maps together.
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(b) By (a), both properties are local on the source and target, so we may assume that
X = Spec(R) and Y = Spec(S) are both affine. Take X ′ = Spec(R′). For I an
ideal of R′ with square zero, given two R-algebra homomorphisms f1, f2 : S → R′,
we get a derivation d : S → I by mapping s to f1(s)− f2(s). If ΩS/R = 0, then d
must be zero, so f1 = f2 and f is formally unramified. Conversely, if ΩS/R 6= 0,
we may take R′ = S ⊕ΩS/R and the two maps s 7→ s⊕ 0 and s 7→ s⊕ ds to get a
counterexample against the formally unramified property.

4. Locality on the target is a formal consequence of locality on the source (because open
immersions are formally étale), so we focus on the latter. By affine communication,
we may assume that Y = Spec(S) is affine and covered by distinguished open subsets
D(gi) which are formally smooth over X. Use X ′0 → Y to pull back gi to R′/I, then lift
to some g̃i ∈ R′. As in part (b) of the previous exercise, any two liftings X ′g̃i → Ygi differ
by an element of HomSg̃i

(ΩSg̃i
/Rg̃i

, Ig̃i); we thus get a 1-cocycle for the quasicoherent
sheaf HomS(ΩS/R, I) on the affine scheme Spec(S). Therefore it is also a coboundary,
and we get a global lifting.

5. Since flatness is local on the source and target, this reduces to a statement about rings:
if R → S is a ring homomorphism, R → T is a faithfully flat ring homomorphism,
and T → S ×R T is flat, then R → S is flat. To check this, let M → N be an
injective morphism of R-modules. Then M ⊗R T → N ⊗R T is injective, as then is
M ⊗R (S ⊗R T ) → N ⊗R (S ⊗R T ). Since R → T is faithfully flat, this implies that
M ⊗R S → N ⊗R S is flat.

6. Suppose the Jacobian condition is satisfied. It is then clear that the morphism is of
finite presentation. Let R′ be a local R-algebra, let I be an ideal of R′ of square
zero, and let S → R′/I be an R-algebra homomorphism; we must exhibit a lifted
homomorphism S → R′. Let y1, . . . , yn be the images of x1, . . . , xn ∈ R′/I; we must
lift these to y1, . . . , yn ∈ R′ so that fi(y1, . . . , yn) = 0 for i = 1, . . . ,m. If we start with
arbitrary lifts z1, . . . , zn instead, we must then solve the equations

0 = fi(z1 + δ1, . . . , zn + δn) (i = 1, . . . , n)

for i = 1, . . . ,m with δ1, . . . , δn ∈ I. But since I is of square zero,

0 = fi(z1, . . . , zn) +
n∑
j=1

δj
∂fi
∂xj

(z1, . . . , zn).

Over the residue field of R′, the Jacobian criterion guarantees that we can do linear
algebra to solve for the δj; the same is then true in R′/I because R′ is a local ring. It
follows that Spec(S)→ Spec(R) is formally smooth.

7. The S-module ΩS/R is generated by elements of the form ds with s ∈ S. However, by
hypothesis each s ∈ S has the form tp for some t ∈ S, and ds = ptp−1 dt = 0 because
S is of characteristic p.
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