Math 203C (Algebraic Geometry), UCSD, spring 2013 Solutions for problem set 2

1. (a) We first check that $\Omega_{S / R}$ is free on the generator $d x$. On one hand, it is clear that $d x$ generates $\Omega_{S / R}$ since S is a quotient of $S=\mathbb{F}_{p}[x]$. On the other hand, we have a well-defined R-linear derivation $S \rightarrow S d x$ given by $\sum_{i=0}^{p-1} c_{i} x^{i} \mapsto \sum_{i=0}^{p-2} i c_{i} x^{i-1} d x$, which induces an isomorphism $\Omega_{S / R} \cong S d x$.
We now check that $R \rightarrow S$ is not formally smooth. We must produce an R-algebra T, an ideal I of square zero, and an R-algebra homomorphism $S \rightarrow T / I$ which does not factor through T. We take $T=\mathbb{F}_{p}\left[x^{2 p}\right]$ and $I=x^{p} T$; then $S \cong T / I$ but $x \in T$ does not lift to an element whose p-th power is zero.
(b) Put $R=\mathbb{F}_{p}\left(x^{p}\right)$ and $S=\mathbb{F}_{p}(x)$. Then again, $\Omega_{S / R}$ is generated by x since x generates S as an R-algebra. On the other hand, we have a well-defined R-linear derivation $S \rightarrow S d x$ given by $\sum_{i=0}^{p-1} c_{i} x^{i} \mapsto \sum_{i=0}^{p-2} i c_{i} x^{i-1} d x$, which induces an isomorphism $\Omega_{S / R} \cong S d x$.
2. It is obvious that $k \rightarrow \ell$ is finitely presented, so it remains to check that $k \rightarrow \ell$ is formally étale. By the primitive element theorem, we can write $\ell=k[t] /(P(t))$ for some monic polynomial $P \in k[t]$ which is separable (i.e., over an algebraic closure of k it factors into distinct linear factors). For any ring homomorphism $\ell \rightarrow R / I$ in which R is a ring and I is an ideal of square zero, we must check that there is a unique factorization $\ell \rightarrow R \rightarrow R / I$; that is, there is a unique root x of $P(t)$ in R lifting the image y of t in R / I. To see this, let x_{0} be any lift of y; then we can and must take

$$
x=x_{0}-P\left(x_{0}\right) / P^{\prime}\left(x_{0}\right) .
$$

(Note that $P^{\prime}\left(x_{0}\right)$ reduces to a unit in R / I and hence is a unit in R, because the nilradical of R is contained in the Jacobson radical.) Therefore $k \rightarrow \ell$ is formally étale and hence étale; that is, (iii) implies (i).
3. Since $R \rightarrow S$ is unramified, $\Omega_{S / R}=0$. Let I be the kernel of $S \otimes_{R} S \rightarrow S$; then $I / I^{2} \cong \Omega_{S / R}=0$, so $I=I^{2}$. Since I is the kernel of a map from a finitely generated R-algebra to a finitely presented R-algebra, it is a finitely generated ideal (we will show this on a later problem set). By Nakayama's lemma, we must have $I_{\mathfrak{p}}=0$ for each $\mathfrak{p} \in \operatorname{Spec}(S)$. But the set of $x \in \operatorname{Spec}(S) \times \operatorname{Spec}(R) \times \operatorname{Spec}(S)$ at which $I_{x}=0$ is open and contained in the image of Δ, so Δ is an open immersion as claimed. (Taken from EGA 4, 16.1.9.)
4. (a) Let x be a closed point of $X=\operatorname{Spec}(S)$. Since k is algebraically closed, by the Nullstellensatz we must have $\kappa(x)=k$ and hence there is a natural section $s: \operatorname{Spec}(k)=\operatorname{Spec}(\kappa(x)) \rightarrow X$ of the structure map $X \rightarrow \operatorname{Spec}(k)$. But $\Delta(X)$ is open in $X \times_{\operatorname{Spec}(k)} X$ by the previous problem, and the inverse image of $\Delta(X)$ under $s \times 1_{X}: X \rightarrow X \times_{\operatorname{Spec}(k)} X$ is equal to $\{x\}$. Hence $\{x\}$ is an open set, as claimed.
(b) By (a), the closed points of $\operatorname{Spec}(S)$ are isolated, so S must be a finite k-algebra. We may assume that $\operatorname{Spec}(S)$ is a single point, whose residue field must equal k since k is algebraically closed. But then Δ is both an open immersion and a bijection on points, hence an isomorphism; that is, $S \otimes_{k} S \cong S$ and so $\operatorname{dim}_{k}(S)=$ $\operatorname{dim}_{k}(S)^{2}$. This forces $S=k$. (Taken from EGA 4, 17.4.1.)
5. Let ℓ be an algebraic closure of k. By the previous problem, $S \otimes_{k} \ell$ is a direct sum of finitely many copies of k, and in particular is reduced. Since S is automatically flat over k, S is also reduced. Since $\operatorname{dim}_{k} S=\operatorname{dim}_{\ell}\left(S \otimes_{k} \ell\right), S$ is a finite k-algebra and hence an Artinian k-algebra. It thus splits into finitely many connected components, so we may reduce to the case where S is connected. Since it is also reduced, it is a field extension of k of finite degree. Since $S \times_{k} \ell$ is a direct sum of $[S: k]$ copies of ℓ, S admits $[S: k]$ distinct embeddings into ℓ, so it must be a separable field extension.
6. Let $x \in X, y \in Y$ be points with $f(y)=x$. Since $Y \times_{X} \kappa(x) \rightarrow \kappa(x)$ is unramified, by an earlier problem $\mathcal{O}_{Y, y} / \mathfrak{m}_{x} \mathcal{O}_{Y, y}$ is a finite separable field extension of $\kappa(x)$. By the primitive element theorem, this field extension has the form $\kappa(x)[t] /(P(t))$ for some irreducible polynomial $P(t)$. By lifting this polynomial, we see that $\mathcal{O}_{Y, y}$ satisfies the Jacobian criterion and is thus smooth over $\mathcal{O}_{X, x}$. Hence f is smooth and unramified, hence étale.
7. (a) If we let y be a coordinate for the bottom \mathbb{P}_{k}^{1}, then we are adjoining a root x of $x^{p}+x^{-1}=y$, or equivalently $x^{p+1}-x y+1=0$. For y finite, it is clear that we get a finite flat ring extension of degree $p+1$. The extension is also unramified because $d\left(x^{p}+x^{-1}\right)=d\left(x^{-1}\right)$ has no zero or pole away from 0 and ∞, and only those points lie over ∞.
(b) It is not possible for $k=\mathbb{C}$ because $\mathbb{P}_{k}^{1}-\{\infty\}$ is simply connected, and so admits no connected covering space of degree greater than 1 .

