Math 203C (Algebraic Geometry), UCSD, spring 2013 Solutions for problem set 2

1. (a) We first check that $\Omega_{S/R}$ is free on the generator dx. On one hand, it is clear that dx generates $\Omega_{S/R}$ since S is a quotient of $S = \mathbb{F}_p[x]$. On the other hand, we have a well-defined R-linear derivation $S \to S \, dx$ given by $\sum_{i=0}^{p-1} c_i x^i \mapsto \sum_{i=0}^{p-2} i c_i x^{i-1} \, dx$, which induces an isomorphism $\Omega_{S/R} \cong S \, dx$. We now check that $R \to S$ is not formally smooth. We must produce an R-algebra

T, an ideal I of square zero, and an R-algebra homomorphism $S \to T/I$ which does not factor through T. We take $T = \mathbb{F}_p[x^{2p}]$ and $I = x^p T$; then $S \cong T/I$ but $x \in T$ does not lift to an element whose p-th power is zero.

- (b) Put $R = \mathbb{F}_p(x^p)$ and $S = \mathbb{F}_p(x)$. Then again, $\Omega_{S/R}$ is generated by x since x generates S as an R-algebra. On the other hand, we have a well-defined R-linear derivation $S \to S dx$ given by $\sum_{i=0}^{p-1} c_i x^i \mapsto \sum_{i=0}^{p-2} i c_i x^{i-1} dx$, which induces an isomorphism $\Omega_{S/R} \cong S dx$.
- 2. It is obvious that $k \to \ell$ is finitely presented, so it remains to check that $k \to \ell$ is formally étale. By the primitive element theorem, we can write $\ell = k[t]/(P(t))$ for some monic polynomial $P \in k[t]$ which is separable (i.e., over an algebraic closure of k it factors into *distinct* linear factors). For any ring homomorphism $\ell \to R/I$ in which R is a ring and I is an ideal of square zero, we must check that there is a unique factorization $\ell \to R \to R/I$; that is, there is a unique root x of P(t) in R lifting the image y of t in R/I. To see this, let x_0 be any lift of y; then we can and must take

$$x = x_0 - P(x_0) / P'(x_0).$$

(Note that $P'(x_0)$ reduces to a unit in R/I and hence is a unit in R, because the nilradical of R is contained in the Jacobson radical.) Therefore $k \to \ell$ is formally étale and hence étale; that is, (iii) implies (i).

- 3. Since $R \to S$ is unramified, $\Omega_{S/R} = 0$. Let I be the kernel of $S \otimes_R S \to S$; then $I/I^2 \cong \Omega_{S/R} = 0$, so $I = I^2$. Since I is the kernel of a map from a finitely generated R-algebra to a finitely presented R-algebra, it is a finitely generated ideal (we will show this on a later problem set). By Nakayama's lemma, we must have $I_{\mathfrak{p}} = 0$ for each $\mathfrak{p} \in \operatorname{Spec}(S)$. But the set of $x \in \operatorname{Spec}(S) \times_{\operatorname{Spec}(R)} \times \operatorname{Spec}(S)$ at which $I_x = 0$ is open and contained in the image of Δ , so Δ is an open immersion as claimed. (Taken from EGA 4, 16.1.9.)
- 4. (a) Let x be a closed point of X = Spec(S). Since k is algebraically closed, by the Nullstellensatz we must have κ(x) = k and hence there is a natural section s : Spec(k) = Spec(κ(x)) → X of the structure map X → Spec(k). But Δ(X) is open in X ×_{Spec(k)} X by the previous problem, and the inverse image of Δ(X) under s × 1_X : X → X ×_{Spec(k)} X is equal to {x}. Hence {x} is an open set, as claimed.

- (b) By (a), the closed points of Spec(S) are isolated, so S must be a finite k-algebra. We may assume that Spec(S) is a single point, whose residue field must equal k since k is algebraically closed. But then Δ is both an open immersion and a bijection on points, hence an isomorphism; that is, $S \otimes_k S \cong S$ and so $\dim_k(S) = \dim_k(S)^2$. This forces S = k. (Taken from EGA 4, 17.4.1.)
- 5. Let ℓ be an algebraic closure of k. By the previous problem, $S \otimes_k \ell$ is a direct sum of finitely many copies of k, and in particular is reduced. Since S is automatically flat over k, S is also reduced. Since $\dim_k S = \dim_{\ell}(S \otimes_k \ell)$, S is a finite k-algebra and hence an Artinian k-algebra. It thus splits into finitely many connected components, so we may reduce to the case where S is connected. Since it is also reduced, it is a field extension of k of finite degree. Since $S \times_k \ell$ is a direct sum of [S:k] copies of ℓ , S admits [S:k] distinct embeddings into ℓ , so it must be a separable field extension.
- 6. Let $x \in X, y \in Y$ be points with f(y) = x. Since $Y \times_X \kappa(x) \to \kappa(x)$ is unramified, by an earlier problem $\mathcal{O}_{Y,y}/\mathfrak{m}_x \mathcal{O}_{Y,y}$ is a finite separable field extension of $\kappa(x)$. By the primitive element theorem, this field extension has the form $\kappa(x)[t]/(P(t))$ for some irreducible polynomial P(t). By lifting this polynomial, we see that $\mathcal{O}_{Y,y}$ satisfies the Jacobian criterion and is thus smooth over $\mathcal{O}_{X,x}$. Hence f is smooth and unramified, hence étale.
- 7. (a) If we let y be a coordinate for the bottom \mathbb{P}^1_k , then we are adjoining a root x of $x^p + x^{-1} = y$, or equivalently $x^{p+1} xy + 1 = 0$. For y finite, it is clear that we get a finite flat ring extension of degree p + 1. The extension is also unramified because $d(x^p + x^{-1}) = d(x^{-1})$ has no zero or pole away from 0 and ∞ , and only those points lie over ∞ .
 - (b) It is not possible for $k = \mathbb{C}$ because $\mathbb{P}_k^1 \{\infty\}$ is simply connected, and so admits no connected covering space of degree greater than 1.