
Math 203C (Algebraic Geometry), UCSD, spring 2013
Solutions for problem set 3

1. (a) Let K be the kernel of f . By hypothesis, there is another surjection f ′ : F ′ →M
with F ′ a finite free R-module such that ker(f ′) is finitely generated. Put F ′′ =
F ⊕ F ′ and f ′′ = f ⊕ f ′ : F ⊕ F ′ →M . Since F ′ is a free module, we may factor
f ′ through a map g′ : F ′ → F to obtain a commutative diagram

0 // K ′′ //

��

F ′′ //

f⊕g′
����

M // 0

0 // K // F //M // 0

whose second and third columns are exact. By the snake lemma or the five
lemma, K ′′ → K is finitely generated. But K ′′ is a finitely generated R-module:
it is enough to take 0⊕m′ for m′ running over a finite generating set for ker(f ′)
together with m ⊕m′ for m running over a finite generating set for F and m′ a
lift of −f(m) to F ′. Therefore K is also finitely generated.

(b) Mutatis mutandis.

(c) Write S = R[x1, . . . , xn]/(f1, . . . , fm) as an R-algebra and choose g1, . . . , gk ∈
R[x1, . . . , xn] whose images in S generate S as an R-module. For i = 1, . . . , n,
choose hij ∈ R and pij ∈ R[x1, . . . , xn] such that

xi =
k∑

j=1

hijgj +
m∑
j=1

pijfj.

Let R′ be the subring of R generated over Z by everything in sight (that is, the
elements hij and the coefficients of the polynomials fi, gj, pij); then R′ is a finitely
generated Z-algebra and hence a noetherian ring by the Hilbert basis theorem.
Put S ′ = R′[x1, . . . , xn]/(f1, . . . , fm); then S ′ is again generated by the xi as an
R′-module. But R′ is noetherian, so S ′ must be not only finitely generated but
finitely presented as an R′-module. This proves the claim.

2. To prove that (i) implies (ii), recall that any étale morphism is smooth (obvious from
the definitions) and any smooth morphism is flat (previous exercise). So if R → S
is finite étale, it is finite flat and also finitely presented as an algebra map. By the
previous exercise, S is also finitely presented as an R-module; but a finitely presented
flat R-module is projective. So S is projective as a module over R. On the other
hand, if R → S is unramified, then by a previous exercise, Spec(S) → Spec(S ⊗R S)
is an open immersion. But it’s also a closed immersion because Spec(S) → Spec(R)
is separated (it’s an affine morphism!), so Spec(S ⊗R S) splits as the disjoint union of
Spec(S) and another subscheme. That is, S ⊗R S splits as the direct sum of S and
another subring, so S ⊗R S → S is finite projective.
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To prove that (ii) implies (i), note that S being finite projective as an R-module
implies that it is finitely presented and flat. In particular, S is finitely presented as
an R-algebra, since any module generators and relations can also be used as algebra
generators and relations. On the other hand, S being finite projective over S ⊗R S
implies that R → S is formally unramified: if I = ker(S ⊗R S → S), then we have
an isomorphism S ⊗R S ∼= S ⊕ I of S ⊗R S-modules and hence of rings, meaning
ΩS/R = I/I2 = 0. So R→ S is finitely presented, flat, and formally unramified, hence
flat and unramified, hence étale by a previous exercise.

To prove that (i) and (iii) are equivalent, we may assume from the outset that S is
finite projective as an R-module. Then both conditions can be checked on local rings,
so we may assume further that R is local with maximal ideal I. In this case, S becomes
a finite free R-module.

To prove that (i) implies (iii), we first check it when I = 0: it is then harmless to
pass from k = R to an algebraic closure, in which case S becomes a direct sum of
copies of k and the claim is clear. In general, by Nakayama’s lemma it follows that
S → HomR(S,R) is surjective, but these are two free modules of the same rank! So
this map must be an isomorphism. (Namely, composing it with an isomorphism of free
modules gives a surjective endomorphism of a finite free module, whose determinant
must then be a unit. So this endomorphism must be invertible.)

To prove that (iii) implies (i), we need only check that R→ S is formally unramified.
We first check this when I = 0, so k = R is a field and S is an artinian semilocal ring.
We may assume S is itself local. Since computing ΩS/R commutes with extending the
base field, we may assume k is algebraically closed. Note that any nilpotent x ∈ S has
trace zero because multiplication by x defines a nilpotent matrix in HomR(S, S), and
nilpotent matrices have all eigenvalues equal to 0. Therefore S must be reduced; since
k is algebraically closed, we must have S = k. This proves the claim when k is a field.

For general R, we know from the field case that ΩS/R ⊗R (R/I) = 0. Since ΩS/R is a
finite R-module, Nakayama’s lemma implies that it is zero.

3. Let I, J be the maximal ideals of R, S. Suppose first that R → S is étale. Then
R/I → S/I is étale, so it is reduced (proving (i)) and a direct sum of separable field
extensions (proving (i)).

Conversely, suppose (i) and (ii) hold. Then S is generated (freely) over R by the lifts of
any basis of S/J over R/I. By the primitive element theorem we can find an element
s ∈ S whose minimal polynomial Q(t) over K has coefficients in R and reduces to a
separable polynomial over R/I. But then S ∼= R[t]/(Q(t)) and Q′(t) is invertible in
S (because it has nonzero image in S/J), so ΩS/R = 0. Therefore R → S is formally
unramified; since it’s also finite flat (any finite torsion-free module over a DVR is free
and hence flat), it is étale.

4. (a) There are many ways to distinguish X and Y . For example, any two irreducible
closed subschemes of X which are not points have nonempty intersection, whereas
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this is not true for Y (take the preimages of two distinct points in P1
k under one

of the projection maps).

(b) We take Z to be the blowup of X at [0 : 0 : 1]. Then the family of lines in question
is given by the Zariski closures of the lines y = mx for m ∈ k (i.e., the proper
transforms of the lines through [0 : 0 : 1]).

(c) (This solution incorporates the correction: the blowup of Y is at one point, not
two.) The motivation is given by (b): if we blow up X at any two points, we
produce two distinct families of pairwise disjoint lines, which we might expect to
be the proper transforms of the horizontal and vertical lines in P1

k.

In order to transform this into a formal construction, let us step through the
geometry more carefully. Let us take the two points of X to be [1 : 0 : 0] and
[0 : 1 : 0] (in the xy-plane, these are the vertical and horizontal points at infinity).
The lines through [1 : 0 : 0] can be distinguished by their values of [y : z], while
the lines through [0 : 1 : 0] may be distinguished by their values of [x : z]. This
leads us to define a rational map from X to Y by

[x : y : z] 7→ ([y : z], [x : z]),

which is defined on the complement of the two points [1 : 0 : 0], [0 : 1 : 0]. Let X̃
be the Zariski closure of the graph of this rational map; it is easily checked to be
the blowup of X at the two missing points.

In the other direction, we may consider the rational map

([a : b], [c : d]) 7→ [c/d : a/b : 1] = [bc : ad : bd],

which is defined on the complement of the point ([1 : 0], [1 : 0]). Let Ỹ be the
Zariski closure of the graph of this rational map; it is easily checked to be the
blowup of Y at the missing point.

The rational map X 99K Y induces a rational map X̃ → Ỹ , which we claim
extends to a true morphism; that is, the Zariski closure of its graph is again a
graph. From this last point of view, it is enough to check at the level of closed
points; the only issue is with the points in the exceptional fibers. So consider for
instance a point in the fiber over [0 : 1 : 0] (the other fiber behaves similarly). If
we take the neighborhood U = Spec(k[x/y, z/y]) of [0 : 1 : 0] in X, its inverse
image in X̃ is

Ũ = Proj k[x/y, z/y][e : f ]/((x/y)f − (z/y)e).

This maps to Y taking (x/y, z/y)[e : f ] to ([1 : z/y], [e : f ]). This means that
we have defined a map Ũ → Ỹ except on the point (1, 0)[1 : 0], which maps to
([1 : 0], [1 : 0]) in Y . To resolve this point, let’s take the neighborhood V =
Spec(k[b/a, d/c]) of ([1 : 0], [1 : 0]) in Y ; its inverse image in Ỹ is

Ṽ = Proj k[b/a, d/c][g : h]/((b/a)h− (d/c)g).
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In a neighborhood of (1, 0)[1 : 0], in Ũ , we can map to Ỹ taking (x/y, z/y)[e : f ]
to ([1 : z/y], [e : f ])[f(z/y) : e].

By similar considerations, we get a well-defined map X̃ → Ỹ near the other
exceptional fiber, and hence a map defined everywhere. Again by similar consid-
erations, we get a well-defined map Ỹ → X̃. The compositions of these maps
must be the identity maps since this is true on an open dense subset, so we get
the desired isomorphisms.

Sketch of alternate solution suggested by Cal Spicer: the closed subscheme of
X consisting of the two reduced points [1 : 0 : 0], [0 : 1 : 0] is cut out by the
homogeneous ideal (xy, xz, yz, z2), so we may view X̃ as a closed subscheme of
P2
k×P3

k. Similarly, if we identify P1
k×kP1

k with the closed subscheme V (sv− tu) in
P3
k
∼= Proj k[s, t, u, v] via the Segre embedding ([a : b], [c : d]) 7→ [bd : ad : bc : ac],

then the closed subscheme consisting of the reduced point ([1 : 0], [1 : 0]) 7→ [0 :
0 : 0 : 1] is cut out by the homogeneous ideal (s, t, u), so we may view Ỹ as a
closed subscheme of P3

k × P2
k. One then checks that matching up factors induces

the isomorphism X̃ ∼= Ỹ .

5. (a) By the Jacobian criterion, the singular points are those points of X where the
partial derivatives of y2z − x3 − x2z all vanish. They are

−3x2 − 2xz, 2yz, y2 − x2.

From the partial in y, we see that either y = 0 or z = 0. If y = 0, then also x = 0
(from the partial in z) and we find the singular point [0 : 0 : 1]. If z = 0, then
x = 0 (from the partial in x) and then y = 0 (from the partial in y) and we find
no singular point.

Warning: if one checks in affine coordinates instead, one must make sure that
one’s singular points also lie on the curve!

(b) Let O be the point [0 : 0 : 1]. The map [x : y : z] 7→ [x : y] then defines a
map X − {O} → P1

k. To find the image, notice that the lowest-order terms of
y2z−x3−x2z at O are y2z−x2z, suggesting that the tangent lines are approaching
y = ±x as we approach O. That in turn suggests that the map X − {O} → P1

k

should induce an open immersion onto P1
k − {±1}.

To check this, choose [a : b] ∈ P1
k − {±1}. The formula [x : y : z] 7→ [x : y] defines

a map P2
k − {O} → P1

k, and the inverse image of [a : b] is the line y/x = b/a, or
ay = bx. To find the intersections of this line with X, we set x = a, y = b, z = t
and solve for t in the equation

b2t = a3 + a2t

to get t = a3/(b2 − a2). The map X − {O} → P1
k − {±1} is then the inverse of

the map [a : b] 7→ [a : b : a3/(b2 − a2)].
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(c) It is enough to produce an exact sequence

0→ k∗ → CaCl(X)→ Z→ 0

because any such sequence of abelian groups is obviously split. Since X −{O} ∼=
P1
k
∼= {±1} and the latter obviously has trivial CaCl, we may replace X with

SpecOX,O for this computation. But then the map to Z is the one measuring
order of vanishing (or if you prefer, pull back along the surjection P1

k → X and
measure order of vanishing at either +1 or −1, the answers being the same) and
the kernel may be identified with k∗ by again pulling back to P1

k and taking the
ratio of the values at +1 and −1.

6. We will first classify lines up to permutation of the variables. Suppose [a : b : c : d]
is a point of X contained in a line. Without loss of generality we may assume d = 1.
Any line through [a : b : c : 1] in P3

C then admits a parametric equation of the form
t 7→ [a+ et : b+ ft : c+ gt : 1] for some e, f, g ∈ C not all zero. We must have

(a+ et)3 + (b+ ft)3 + (c+ gt)3 + 1 = 0.

Without loss of generality we may assume g 6= 0 (by permuting variables), g = 1 (by
rescaling e, f, g) and c = 0 (by shifting the point along the line). We then have

−1 = a3 + b3

0 = a2e+ b2f

0 = ae2 + bf 2

−1 = e3 + f 3.

From the first equation, we may assume without loss of generality that a 6= 0. Then
a2e = −b2f and ae2 = −bf 2, so (ae)3 = (bf)3. If e = 0, then f 6= 0 from the fourth
equation, so b = 0, and a and f are both cube roots of unity. This gives us a line of
the form

t 7→ [ζ3 : ζ ′3t : t : 1]

for some cube roots of unity ζ3, ζ
′
3; in other words, this line is given by a = ζ3d, b = ζ ′3c.

By permuting coordinates, this gives us a total of (3 choices for the pairing) × (3
choices for the ratio between each pair) = 27 lines.

If e 6= 0, then f 6= 0 from the fourth equation and a/e = b/f (so also b 6= 0); also,
a6 = b6, so a = ζ6b and e = ζ6f for some sixth root of unity ζ6. But now on one hand,
to have

−1 = a3 + b3 = a3 + ζ36b
3 = a3 ± a3

we must have ζ36 = 1; on the other hand, to have

0 = a2e+ b2f = ζ36b
2f + b2f = ±b2f + b2f

we must have ζ36 = −1. So we get no more lines from this case.
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7. Given a line bundle L on X, by definition there exists an open covering {Ui}i∈I of
X such that L|Ui

admits a free generator si. Then the elements si/sj ∈ O∗X(Ui ∩ Uj)
form a 1-cocycle. In the other direction, given an open covering {Ui}i∈I of X and a
1-cocycle tij ∈ O∗X(Ui ∩ Uj), we may use the tij to define glueing data for the trivial
line bundles on the Ui.
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