## Math 203C (Algebraic Geometry), UCSD, spring 2013 Problem Set 3 (due Wednesday, May 1)

Solve the following problems, and turn in the solutions to four of them. Note: no classes April 22-26 because I'll be out of town.

1. Let $R$ be a ring.
(a) Let $M$ be a finitely presented $R$-module. Prove that for any surjective $R$-module homomorphism $f: F \rightarrow M$ with $F$ finitely generated, $\operatorname{ker}(f)$ is also finitely generated.
(b) Let $S$ be a finitely presented $R$-algebra. Prove that for any surjective $R$-algebra homomorphism $f: P \rightarrow M$ with $P$ finitely generated, $\operatorname{ker}(f)$ is also finitely generated.
(c) Let $S$ be a finitely presented $R$-algebra which is finitely generated as an $R$-module. Prove that $S$ is also finitely presented as an $R$-module. Hint: the ring $R$ is the union of noetherian subrings; use the finite presentation hypothesis to reduce to working over such a subring.
2. Let $R \rightarrow S$ be a finite ring homomorphism. Prove that the following conditions are equivalent.
(i) The morphism $R \rightarrow S$ is étale.
(ii) The module $S$ is projective over both $R$ and $S \otimes_{R} S$ (via the multiplication map $S \otimes_{R} S \rightarrow S$ ).
(iii) The $R$-module $S$ is projective and the map $S \rightarrow \operatorname{Hom}_{R}(S, R)$ taking $s$ to $t \mapsto$ $\operatorname{Trace}(u \mapsto s t u)$ is an isomorphism of $R$-modules. (We defined Trace : $\operatorname{Hom}_{R}(S, S) \rightarrow$ $R$ on a previous problem set.)

Hint: for most of this you may assume $R$ is a local ring. Also, a finitely presented module is flat iff it is projective.
3. Let $R$ be a complete discrete valuation ring with fraction field $K$. Let $L$ be a finite separable extension of $K$. Let $S$ be the integral closure of $R$ in $L$; it is known (and you may assume without proof) that $S$ is a complete discrete valuation ring and $R \rightarrow S$ is a finite homomorphism. Prove that $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ is étale if and only if the following conditions hold.
(i) The value groups of $R$ and $S$ coincide.
(ii) The residue field of $S$ is separable over the residue field of $R$.

For example, $\mathbb{Z}_{p}[\sqrt{p}]$ is not étale over $\mathbb{Z}_{p}$.
4. Let $k$ be an algebraically closed field. Put $X=\mathbb{P}_{k}^{2}$ and $Y=\mathbb{P}_{k}^{1} \times \operatorname{Spec}(k) \mathbb{P}_{k}^{1}$.
(a) Prove that $X$ and $Y$ are not isomorphic as schemes over $k$. (Optional: omit "over $k "$.)
(b) Let $Z$ be the blowup of $X$ at a point. Produce a one-parameter family of copies of $\mathbb{P}_{k}^{1}$ inside $Z$, any two of which are disjoint.
(c) Prove that there is a blowup of $X$ at two points which is isomorphic to a blowup of $Y$ at two peints one point.
5. Let $k$ be a field of characteristic $\neq 2,3$. Let $X$ be the curve $y^{2} z=x^{3}+x^{2} z$ in $\mathbb{P}_{k}^{2}$.
(a) Prove that $X$ is not smooth over $k$ by finding all of its singular points.
(b) Show that $X$ minus its singular point(s) is isomorphic to an open subscheme of $\mathbb{P}_{k}^{1}$.
(c) Suppose that $k$ is algebraically closed. Prove that the group of Cartier divisors on $X$ modulo principal Cartier divisors is isomorphic to $k^{*} \times \mathbb{Z}$.
6. Let $X$ be the threefold $x^{3}+y^{3}+z^{3}+w^{3}=0$ in $\mathbb{P}_{\mathbb{C}}^{3}$. Prove that there are exactly 27 distinct lines of $\mathbb{P}_{\mathbb{C}}^{3}$ contained in $X$. We will see later that this is true for every smooth cubic threefold over an algebraically closed field of characteristic $\neq 3$.
7. Prove that for any scheme $X$, the group $\operatorname{Pic}(X)$ is isomorphic to the Coch cohomology group $\check{H}^{1}\left(X, \mathcal{O}_{X}^{*}\right)$. It can even be shown that agrees with the sheaf $H^{1}$ even though $\mathcal{O}_{X}^{*}$ is not a quasicoherent sheaf; see Hartshorne exercise III.4.4.

