Math 203C (Algebraic Geometry), UCSD, spring 2013 Solutions for problem set 4

1. Suppose that R is perfect and noetherian. For I an ideal of R, put $I^{1 / p}=\left\{x^{1 / p}: x \in I\right\}$; this is again an ideal of R. We must then have $I=I^{1 / p}$, as otherwise the sequence $I, I^{1 / p}, I^{1 / p^{2}}, \ldots$ would form an infinite ascending chain of ideals.

Suppose that R is an integral domain. Then for any nonzero $x \in R$, the principal ideals $\left(x^{p}\right)$ and (x) must coincide by the first paragraph, so $x=x^{p} y$ for some $y \in R$. But then $1=x^{p-1} y$, so x is a unit in R; it follows that R is a field.
In general, since R is noetherian it has finitely many minimal prime ideals I_{1}, \ldots, I_{n}. By the first paragraph, R / I_{i} is again perfect, and by the second paragraph it is a field. Since R is perfect, it is reduced, so the map $R \rightarrow R / I_{1} \oplus \cdots \oplus R / I_{n}$ is injective; it is also surjective by the Chinese remainder theorem.
2. Any very ample divisor is equivalent to a nonzero effective divisor (namely any hyperplane section), so its degree must be positive. Conversely, suppose $\operatorname{deg}(D)>0$. To check that D is ample, we must check that for any quasicoherent finitely generated sheaf \mathcal{E} on X, for n large the sheaf $\mathcal{E} \otimes \mathcal{O}(n D)$ is generated by global sections. If we fix a projective embedding and hence a choice of $\mathcal{O}(1)$, we can write \mathcal{E} as a quotient of a direct sum of various sheaves $\mathcal{O}\left(d_{n}\right)$, so it is enough to check the claim with \mathcal{E} equal to one of these. In particular, it is enough to check the case where $\mathcal{E}=\mathcal{O}(E)$ for some divisor E. But by Riemann-Roch, for any closed points P and Q, for $m_{1}, m_{2} \in\{0,1\}$, we have

$$
h^{0}\left(E+n D-m_{1} P-m_{2} Q\right)=\operatorname{deg}(E)+n \operatorname{deg}(D)-m_{1}-m_{2}+1-g
$$

for n sufficiently large. For such $n, E+n D$ is very ample relative to $\operatorname{Spec}(k)$.
3. (a) Since \mathcal{L}_{1} is very ample relative to $\operatorname{Spec}(k)$, it defines a closed immersion j_{1} : $X \rightarrow \mathbb{P}_{k}^{n_{1}}$ for some $n_{1} \geq 0$. Since \mathcal{L}_{2} is generated by its global sections, it defines a morphism $j_{2}: X \rightarrow \mathbb{P}_{k}^{n_{2}}$. Via the Segre embedding, $\mathcal{L}_{1} \otimes \mathcal{L}_{2}$ defines a map $j_{3}: X \rightarrow \mathbb{P}_{k}^{n_{3}}$ which must be a closed immersion because it factors as j_{1} followed by a closed immersion. Hence $\mathcal{L}_{1} \otimes \mathcal{L}_{2}$ is very ample relative to $\operatorname{Spec}(k)$.
(b) By a theorem from class, there exists n_{1} such that for $n \geq n_{1}, \mathcal{L}_{1}^{\otimes n_{1}}$ is very ample relative to $\operatorname{Spec}(k)$. By the definition of ampleness, there exists n_{2} such that for $n \geq n_{2}, \mathcal{L}_{1}^{\otimes n_{2}} \otimes \mathcal{L}_{2}$ is generated by global sections. By (a), the claim now follows for $n \geq n_{1}+n_{2}$.
(c) Note that S is invariant under positive scalar multiplication (by the definition of ampleness). Also, we proved in class that the tensor product of two ample line bundles is ample, which proves that S is convex. To prove that S is ample, note that for any point $s \in S$ and any $t \in \mathbb{Q}^{n}$, by (b), any point on the segment from s to t sufficiently close to s is in S. If we take t to run over the vertices of a simplex containing s in its interior, we produce another simplex containing s in
its interior consisting of points of S; by convexity, S contains a neighborhood of s. Hence S is open.
4. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the blowups of X at the four indicated ideals. We claim that the only isomorphism among these is $X_{1} \cong X_{3}$. We check that $X_{1} \not \approx X_{2}$ by noticing that the inverse image ideal sheaf of $\left(x, y^{2}\right)$ on X_{1} is not locally principal: on the coordinate chart $\operatorname{Spec} k[y, x / y]$ it has the form $\left(y(x / y), y^{2}\right)$.
We check that $X_{1} \cong X_{3}$ by noticing first that the inverse image ideal sheaf of $\left(x_{2}, x y, y^{2}\right)$ on X_{1} is locally principal: on the chart $\operatorname{Spec} k[y, x / y]$ of X_{1} it is generated by y^{2}, while on the chart Spec $k[x, y / x]$ they are both generated by x^{2}. This yields the map $X_{3} \rightarrow X_{1}$. In the other direction, write

$$
X_{3}=\operatorname{Proj} k[x, y][a, b, c] /\left(a y-b x, b y-c x, a c-b^{2}\right)
$$

On the coordinate chart

$$
X_{3, a} \cong k[x, y, b / a, c / a] /\left(y-(b / a) x,(b / a) y-(c / a) x, c / a-(b / a)^{2}\right) \cong k[x, b / a],
$$

the inverse image ideal sheaf of (x, y) is generated by x, and similarly on $X_{3, c}$ it is generated by y. On

$$
X_{3, b} \cong k[x, y, a / b, c / b] /((a / b) y-x, y-(c / b) x,(a / b)(c / b)-1),
$$

the inverse image is generated by each of x and y (which differ by a unit). This yields a map $X_{1} \rightarrow X_{3}$, so $X_{1} \cong X_{3}$.
We check that $X_{1} \not \not X_{4}$ and $X_{2} \not \approx X_{4}$ by writing

$$
X_{4}=\operatorname{Proj} k[x, y][a, b] /\left(a y^{2}-b x^{2}\right) .
$$

On the coordinate chart

$$
X_{4, b} \cong k[x, y, a / b] /\left((a / b) y^{2}-x^{2}\right),
$$

neither the inverse image ideal sheaf of (x, y) nor $\left(x, y^{2}\right)$ is locally principal at $x=y=$ $a / b=0$.
5. We start by blowing up at $(0,0)$ to get X_{1}. Let Z_{1} be the inverse image of Z in X_{1}; it consists of the exceptional divisor E_{1} plus the strict transform Z_{1}. In the chart Spec $k[y, x / y], E_{1}$ is cut out by y and Z_{1} by $1-y^{2}(x / y)^{4}-y^{3}(x / y)^{4}$, and they do not meet. We thus need only consider the other chart $\operatorname{Spec} k[x, y / x]$, where E_{1} is cut out by x and Z_{1} by $(y / x)^{2}-x^{2}-x^{3}$. The only intersection is at $x=y / x=0$, so we blow up there next. We write E_{1} (again) for the strict transform of E_{1}, E_{2} for the new exceptional divisor, and Z_{2} for the strict transform of Z_{1}. In the chart Spec $k\left[x, y / x^{2}\right]$, E_{1} is cut out by $y / x^{2}, E_{2}$ by x, and Z_{2} by $\left(y / x^{2}\right)^{2}-1-x$. These are all smooth and meet transversely. In the other chart $\operatorname{Spec} k\left[y / x, x^{2} / y\right], E_{1}$ is cut out by $x^{2} / y, E_{2}$ by y / x, and Z_{2} by $1-\left(x^{2} / y\right)^{2}-(y / x)\left(x^{2} / y\right)^{3}$, and again all of these are smooth and meet transversely.
6. (a) Since the claim is local on X, we may assume $X=\operatorname{Spec} R$ with R noetherian. Let $I_{Y}=\left(f_{1}, \ldots, f_{m}\right)$ and $I_{Z}=\left(g_{1}, \ldots, g_{n}\right)$ be the ideals cutting out Y and Z, so that $Y \times_{X} Z$ is cut out by $I_{Y}+I_{Z}=\left(f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{n}\right)$. We may then view \tilde{X} as a closed subscheme of $P=\operatorname{Proj} R\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$. The proper transforms of Y and Z are the intersections of this subscheme with the closed subschemes $P_{1}=\operatorname{Proj} R\left[x_{1}, \ldots, x_{m}\right]$ and $P_{2}=\operatorname{Proj} R\left[y_{1}, \ldots, y_{n}\right]$ of P (via the graded maps sending one of the two sets of generators to 0); but P_{1} and P_{2} are themselves disjoint.
(b) Take $X=\mathbb{A}_{k}^{2}, Y=V(y)$, and $Z=V\left(y-x^{2}\right)$. Then the reduced closed subscheme underlying $Y \times_{X} Z$ is the closed point (0,0), so we get the standard blowup. In the coordinate chart Spec $k[x, y / x]$, the strict transforms of Y and Z are cut out by x and $y / x-x$, which meet at $x=y / x=0$.

