
Math 203C (Algebraic Geometry), UCSD, spring 2013
Solutions for problem set 5

1. (a) We have ωX/k = ωP3
k/k
⊗O(4) = O because the canonical sheaf on Pn

k is O(−n−1).

To compute H1(X,OX), we may write it as H1(P3
k, f∗OX) for f : X → P3

k the
closed immersion. Using the exact sequence

0→ OP3
k
(−4)→ OP3

k
→ f∗OX → 0

we have an exact sequence

H1(P3
k,OP3

k
)→ H1(X,OX)→ H2(P3

K ,OP3
k
(−4)).

The outer terms are both 0, so the inside term is too.

(b) In this case, we have ωX/k = ωP4
k/k
⊗O(2 + 3) = O. To compute H1(X,OX), let

Q be the degree 2 hypersurface Let f : X → Q and g : Q → P4
k be the closed

immersions. Using the exact sequence

0→ OQ(3)→ OQ → f∗OX → 0

we have an exact sequence

H1(Q,OQ)→ H1(X,OX)→ H2(Q,OQ(3)).

As in (a), we compute that the outside terms are 0.

2. (a) For j : X → P3
k the closed immersion, we have ωX = j∗(ωP3

k
⊗O(d)) = j∗(O(−d−

4)). Let H1, H2 be two hypersurfaces of degree d in in P3
k; we then have K ·K =

(X ∩H1) · (X ∩H2). For generic choices of H1, H2, the intersection X ∩H1 ∩H2

is transverse and consists of d(d− 4)2 points, proving the claim.

(b) Write X = C1×kC2. Let K1, K2 be the canonical divisors on C1, C2. If we identify
K1 with the divisor K1 × C2 and similarly for K2, we then have K = K1 + K2

and (since K1 ·K1 = K2 ·K2 = 0)

K ·K = 2K1 ·K2 = 2 deg(K1) deg(K2) = 2(2g1 − 2)(2g2 − 2) = 8(g1 − 1)(g2 − 1).

3. Let I be the ideal sheaf defining D. Then ωC is isomorphic to the dual of I/I2 = ∆∗(I).
We thus have

D ·D = degD(∆∗(I)∨) = − degC(ΩC/k) = 2− 2g.

4. (a) Put

E = D − D ·H
H ·H

H,

so that E ·H = 0 and so E · E = E ·D. By the Hodge index theorem,

0 ≥ E · E = E ·D = D ·D − D ·H
H ·H

(D ·H).

This yields the claimed inequality.
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(b) Put H = C + C ′, which is ample. Since C · C = 0, C · C ′ = 1, C ′ · C ′ = 0, we
have H ·H = 2. Also, if we put J = C − C ′, then J · J = −2 and H · J = 0; in
particular, H and J are orthogonal.

Put

E = D − D ·H
2

H +
D · J

2
J,

so that E ·H = E · J = 0, and so E · E = E ·D. By the Hodge index theorem,

0 ≥ E · E

= E ·D − 1

2
(D ·H)2 +

1

2
(D · J)2

= E ·D − 1

2
(D · C + D · C ′)2 +

1

2
(D · C −D · C ′)2

= E ·D − 2(D · C)(D · C ′).
This yields the claimed inequality.

5. (a) Let x be an intersection point of D and F ; then in particular x is an Fq-rational
point of X. Let t be a uniformizer for C at x. Let t1, t2 be the pullbacks of t to
the two copies of C in X; then D is locally (at x) cut out by t2 − t1 while F is
locally cut out by t2 − tq1. The differentials of these functions are dt2 − dt1 and
dt2, which are linearly independent. This gives the desired transversality.

(b) Let I be the ideal sheaf defining D. Then the restriction of the ideal sheaf defining
F , when pulled back to C, is isomorphic to ϕ∗(I/I2)∨, so its degree is q(2− 2g).

6. Put N = #C(Fq). We compute C · D = C ′ · D = 1, C · F = q, C ′ · F = 1; from a
previous problem we have D ·D = 2− 2g. Put E = rD + sF for some r, s ∈ Z. By a
previous problem,

E · E ≤ 2(E · C)(E · C ′).
The left side of this inequality equals

(rD + sF ) · (rD + sF ) = r2(2− 2g) + 2rsN + s2q(2− 2g).

By a previous problem, the right side equals

2(rD · C + sF · C)(rD · C ′ + sF · C ′) = 2(r + qs)(r + s).

Therefore we have

r2(2− 2g) + 2rsN + s2q(2− 2g) ≤ 2(r + qs)(r + s)

or equivalently
2gr2 + 2(q + 1−N)rs + 2gqs2 ≥ 0.

But this is true for any r, s, so the quadratic form on the left side must be positive
definite; in particular, its discriminant

4(q + 1−N)2 − 4(2gq)(2g)

must be nonpositive. This gives the desired inequality.

2


