Math 203C (Algebraic Geometry), UCSD, spring 2013 Problem Set 5 (due *Friday*, May 17)

Solve the following problems, and turn in the solutions to *four* of them. Throughout this problem set, let k be an algebraically closed field (of arbitrary characteristic unless otherwise specified).

- 1. A K3 surface over k is a surface X for which $\omega_{X/k} \cong \mathcal{O}_X$ (the canonical divisor is trivial) and $H^1(X, \mathcal{O}_X) = 0$. Prove that the following give examples of K3 surfaces.
 - (a) Any smooth surface of degree 4 in \mathbb{P}^3_k .
 - (b) A smooth complete intersection of a degree 2 and a degree 3 hypersurface in \mathbb{P}_k^4 .
- 2. (a) Let X be a smooth surface of degree d in \mathbb{P}^3_k . Prove that $K \cdot K = d(d-4)^2$.
 - (b) Let X be the product of two curves of genera g_1, g_2 . Prove that $K \cdot K = 8(g_1 1)(g_2 1)$.
- 3. Let C be a curve of genus g over k, take $X = C \times_k C$, and let D be the image of the diagonal $\Delta : C \to X$. Prove that $D \cdot D = 2 2g$.
- 4. (a) Let H be an ample divisor on X. Prove that for any divisor D on X,

$$(D \cdot D)(H \cdot H) \le (D \cdot H)^2.$$

Hint: orthogonalize.

(b) Take $X = C \times_k C'$ for C, C' two curves over k. Prove that for any divisor D on X,

$$D \cdot D \le 2(D \cdot C)(D \cdot C')$$

where C is identified with the divisor $C \times \{x'\}$ for some (any) closed point $x' \in C'$, and similarly for C'. Hint: orthogonalize again, this time using C + C' and C - C'.

- 5. In this problem and the next, we reconstruct one of Weil's proofs of the Riemann hypothesis for curves over a finite field using the Hodge index theorem. Take k to be an algebraic closure of a finite field \mathbb{F}_q . Let C be a curve of genus g over a finite field \mathbb{F}_q and write C_k for $C \times_{\text{Spec}(\mathbb{F}_q)} \text{Spec}(k)$. Put $X = C \times_k C$, let D be the diagonal in X, and let F be the graph of the q-power Frobenius map $\varphi : C \to C$.
 - (a) Prove that D and F meet transversally, so $D \cdot F = \#C(\mathbb{F}_q)$. Hint: work locally around an intersection point.
 - (b) Prove that $F \cdot F = q(2 2g)$.
- 6. With notation as in the previous problem, prove that

$$|\#C(\mathbb{F}_q) - 1 - q| \le 2g\sqrt{q}$$

Hint: consider rD + sF for varying r, s.