Math 203C (Algebraic Geometry), UCSD, spring 2013 Problem Set 5 (due Friday, May 17)

Solve the following problems, and turn in the solutions to four of them. Throughout this problem set, let k be an algebraically closed field (of arbitrary characteristic unless otherwise specified).

1. A K3 surface over k is a surface X for which $\omega_{X / k} \cong \mathcal{O}_{X}$ (the canonical divisor is trivial) and $H^{1}\left(X, \mathcal{O}_{X}\right)=0$. Prove that the following give examples of K3 surfaces.
(a) Any smooth surface of degree 4 in \mathbb{P}_{k}^{3}.
(b) A smooth complete intersection of a degree 2 and a degree 3 hypersurface in \mathbb{P}_{k}^{4}.
2. (a) Let X be a smooth surface of degree d in \mathbb{P}_{k}^{3}. Prove that $K \cdot K=d(d-4)^{2}$.
(b) Let X be the product of two curves of genera g_{1}, g_{2}. Prove that $K \cdot K=8\left(g_{1}-\right.$ 1) $\left(g_{2}-1\right)$.
3. Let C be a curve of genus g over k, take $X=C \times_{k} C$, and let D be the image of the diagonal $\Delta: C \rightarrow X$. Prove that $D \cdot D=2-2 g$.
4. (a) Let H be an ample divisor on X. Prove that for any divisor D on X,

$$
(D \cdot D)(H \cdot H) \leq(D \cdot H)^{2} .
$$

Hint: orthogonalize.
(b) Take $X=C \times{ }_{k} C^{\prime}$ for C, C^{\prime} two curves over k. Prove that for any divisor D on X,

$$
D \cdot D \leq 2(D \cdot C)\left(D \cdot C^{\prime}\right)
$$

where C is identified with the divisor $C \times\left\{x^{\prime}\right\}$ for some (any) closed point $x^{\prime} \in C^{\prime}$, and similarly for C^{\prime}. Hint: orthogonalize again, this time using $C+C^{\prime}$ and $C-C^{\prime}$.
5. In this problem and the next, we reconstruct one of Weil's proofs of the Riemann hypothesis for curves over a finite field using the Hodge index theorem. Take k to be an algebraic closure of a finite field \mathbb{F}_{q}. Let C be a curve of genus g over a finite field \mathbb{F}_{q} and write C_{k} for $C \times_{\operatorname{Spec}\left(\mathbb{F}_{q}\right)} \operatorname{Spec}(k)$. Put $X=C \times_{k} C$, let D be the diagonal in X, and let F be the graph of the q-power Frobenius map $\varphi: C \rightarrow C$.
(a) Prove that D and F meet transversally, so $D \cdot F=\# C\left(\mathbb{F}_{q}\right)$. Hint: work locally around an intersection point.
(b) Prove that $F \cdot F=q(2-2 g)$.
6. With notation as in the previous problem, prove that

$$
\left|\# C\left(\mathbb{F}_{q}\right)-1-q\right| \leq 2 g \sqrt{q}
$$

Hint: consider $r D+s F$ for varying r, s.

