Math 203C (Algebraic Geometry), UCSD, spring 2013 Problem Set 6 (due Wednesday, May 29)

Solve the following problems, and turn in the solutions to *four* of them. No homework due Wednesday, May 22 due to qualifying exams.

- 1. Let $f: Y \to X$ be a finite surjective morphism between integral noetherian schemes. Let x, y be the generic points of X, Y. Let \mathcal{L} be a line bundle on Y, let U be a neighborhood of x, let g be a global section of \mathcal{L} , and suppose that $y \in Y_g \subseteq f^{-1}(U)$. Prove that for any sufficiently large n > 0, there exists a homomorphism $u: \mathcal{O}_X^m \to f_*(\mathcal{L}^{\otimes n})$ of \mathcal{O}_X -modules for some m > 0 which is an isomorphism over some neighborhood of x.
- 2. Let $f: Y \to X$ be a finite surjective morphism of proper integal schemes over a field k. Let \mathcal{L} be a line bundle on X. Prove that if $f^*\mathcal{L}$ is ample, then so is \mathcal{L} . Hint: use the previous exercise to reduce from X to a closed subscheme of lower dimension.
- 3. Let k be an algebraically closed field. Let X be the blowup of \mathbb{P}_k^2 at five distinct closed points P_1, \ldots, P_5 , no three of which are collinear, viewed as a degree 4 Del Pezzo surface in \mathbb{P}_k^4 (via the linear system $|3L P_1 \cdots P_5|$). Prove that X contains exactly 16 lines of \mathbb{P}_k^4 .
- 4. Let f be a rational function on a smooth projective connected surface X over an algebraically closed field k. Prove that there exists a morphism $\pi : \tilde{X} \to X$ which is a composition of monoidal transformations such that $\pi^*(f)$ defines a morphism $\tilde{X} \to \mathbb{P}^1_k$. Hint: the key point is to separate the zero locus and the pole locus.
- 5. Let C be an irreducible curve on a smooth projective connected surface X over an algebraically closed field k. Suppose that there exists a morphism $\pi : X \to Y$ to a projective (but not necessarily smooth) surface Y over k such that $C = \pi^{-1}(P)$ for some closed point $P \in Y$. Prove that $C^2 < 0$. Hint: pull back a divisor of Y containing P and another divisor not containing P.
- 6. Using Castelnuovo's criterion, give an alternate proof that the blowup of \mathbb{P}_k^2 at two points is isomorphic to the blowup of $\mathbb{P}_k^1 \times \mathbb{P}_k^1$ at one point.