Math 203C (Algebraic Geometry), UCSD, spring 2013 Problem Set 6 (due Wednesday, May 29)

Solve the following problems, and turn in the solutions to four of them. No homework due Wednesday, May 22 due to qualifying exams.

1. Let $f: Y \rightarrow X$ be a finite surjective morphism between integral noetherian schemes. Let x, y be the generic points of X, Y. Let \mathcal{L} be a line bundle on Y, let U be a neighborhood of x, let g be a global section of \mathcal{L}, and suppose that $y \in Y_{g} \subseteq f^{-1}(U)$. Prove that for any sufficiently large $n>0$, there exists a homomorphism $u: \mathcal{O}_{X}^{m} \rightarrow f_{*}\left(\mathcal{L}^{\otimes n}\right)$ of \mathcal{O}_{X}-modules for some $m>0$ which is an isomorphism over some neighborhood of x.
2. Let $f: Y \rightarrow X$ be a finite surjective morphism of proper integal schemes over a field k. Let \mathcal{L} be a line bundle on X. Prove that if $f^{*} \mathcal{L}$ is ample, then so is \mathcal{L}. Hint: use the previous exercise to reduce from X to a closed subscheme of lower dimension.
3. Let k be an algebraically closed field. Let X be the blowup of \mathbb{P}_{k}^{2} at five distinct closed points P_{1}, \ldots, P_{5}, no three of which are collinear, viewed as a degree 4 Del Pezzo surface in \mathbb{P}_{k}^{4} (via the linear system $\left|3 L-P_{1}-\cdots-P_{5}\right|$). Prove that X contains exactly 16 lines of \mathbb{P}_{k}^{4}.
4. Let f be a rational function on a smooth projective connected surface X over an algebraically closed field k. Prove that there exists a morphism $\pi: \tilde{X} \rightarrow X$ which is a composition of monoidal transformations such that $\pi^{*}(f)$ defines a morphism $\tilde{X} \rightarrow \mathbb{P}_{k}^{1}$. Hint: the key point is to separate the zero locus and the pole locus.
5. Let C be an irreducible curve on a smooth projective connected surface X over an algebraically closed field k. Suppose that there exists a morphism $\pi: X \rightarrow Y$ to a projective (but not necessarily smooth) surface Y over k such that $C=\pi^{-1}(P)$ for some closed point $P \in Y$. Prove that $C^{2}<0$. Hint: pull back a divisor of Y containing P and another divisor not containing P.
6. Using Castelnuovo's criterion, give an alternate proof that the blowup of \mathbb{P}_{k}^{2} at two points is isomorphic to the blowup of $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ at one point.
