
Math 203C (Algebraic Geometry), UCSD, spring 2013
Solutions for problem set 7

1. The map GL(m)×SpecZ ZJ → VJ is the multiplication map on functors of points. The
map VJ ×GL(m)×SpecZ ZJ is defined on functors of points to send a matrix A = (xij)
to the pair consisting of B = (xi,i`) and B−1A.

2. First, note that switching two terms in either I or J negates the relation QI,J,s. In
particular, if xI = 0 or xJ = 0 then QI,J,s = −QI,J,s and so QI,J,s = 0. We may thus
assume xI , xJ 6= 0 hereafter.

Next, note that it is enough to check that each f ∗(QI,J,s) vanishes. Using the previous
paragraph, we may reduce to the case J = (1, . . . ,m).

Next, note that since Amn
Z is irreducible, we need only check that f ∗(QI,J,s) vanishes

on the open dense subscheme UJ .

Next, note that f is GL(m)-equivariant and UJ
∼= GL(m) ×SpecZ ZJ , so it suffices to

check that f ∗(QI,J,s) vanishes on ZJ . Now we are checking the vanishing of

det(xi,i`)−
m∑
t=1

f ∗(x(i1,...,is−1,jt,is+1,...,im))xt,is ,

but f ∗(x(i1,...,is−1,jt,is+1,...,im)) can be interpreted as the signed (s, t)-minor of the matrix
det(xi,i`). This proves the claim.

3. We may again assume without loss of generality that J = (1, . . . ,m). In this case, the
inverse map g : G(m,n)xJ

→ ZJ may be constructed as

g∗(xhk) = x(1,...,h−1,k,h+1,...,m)/xJ .

It is clear (from looking at functors of points) that g ◦f is the identity on ZJ . To check
that f ◦ g is the identity, again we look at functors of points. Take R-valued points

for any ring R. Given a point of P(n
m)−1 satisfying the Plücker relations, we may write

xI in terms of the g∗(xhk) and the xI′ where I ′ is obtained from I by replacing one
element with an element of {1, . . . ,m}. By repeating this construction, we eventually
write xI in terms of the g∗(xhk) and nothing else. This proves that each point satisfying
the Plücker relations is uniquely determined by the g∗(xhk), from which it follows that
f ◦ g is the identity.

4. (a) It suffices to take the intersection of all closed subschemes of X through which f
factors. Since X is noetherian, this ends being a finite intersection, so is again a
closed subscheme.

(b) Since S is affine and X → S is quasicompact, X is quasicompact. We may thus
cover X by finitely many open affine subschemes U1, . . . , Un. Since X → S is
locally of finite type, each Ui corresponds to a finitely generated algebra over the
coordinate ring of S, and hence admits a closed immersion into An

S. Embed An
S

into Pn
S and then let Pi be the closed image of Ui → Pn

S.
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(c) If X is irreducible, we may replace X with the disjoint union of its components
and build the map on top of this. So let us assume X is irreducible. Define
U1, . . . , Un as in (b), excluding any empty subschemes; then U = U1 ∩ · · · ∩ Un is
open and nonempty, hence dense. Let X ′ be the closed image of U → X ×S P for
P = P1×S · · ·×SPn. To see that this works, note first that U → X×SP is an open
immersion, so X ′ ×X U → U is an isomorphism. Then note that X ×S P → P is
the base extension of X → S and hence is proper, so X ′ → X ×S P → P is both
proper and an immersion, hence a closed immersion. Since P is projective over S
(via a Segre embedding), so is X ′.

5. (a) The local ring OT,P has fraction field K(T ) and is integrally closed therein. Let
R be the integral closure of OT,P in K(C); then R is the direct sum of the local
rings of C over the preimages of P . If these separate into multiple G-orbits, then
summing each orbit gives a nontrivial direct sum decomposition of R into G-
stable summands. The projection onto one such summand is then a G-invariant
idempotent element of R other than 0 and 1, but no such element exists because
RG equals R∩K(T ) = OT,P (because OT,P is integrally closed in K(T )) and this
ring is connected.

(b) Since we are in characteristic 0, we may compute ramification numbers by count-
ing missing preimages. For each closed point P in T , the preimages of P are
permuted transitively (by Galois theory), so each one makes the same contribu-
tion to the ramification number so the number of such preimages is n/sP where
sP is the order of the stabilizer of any one point in the preimage. We then have
rP = sP and by Riemann-Hurwitz,

2g − 2 = n(2g(T )− 2) +
∑
P

(
n− n

rP

)
.

(c) Write

C = 2h− 2 +
m∑
i=1

(
1− 1

ri

)
.

If h ≥ 2, then C ≥ 2. If h = 1, then if m = 0 we have C = 0, and if m ≥ 1 we
have C ≥ 1/2. We may thus assume h = 0 hereafter.

If m ≤ 2, then C < 2. If m ≥ 5, then C ≥ 5/2. We thus need only consider the
cases m = 3 and m = 4. We may assume 2 ≤ r1 ≤ r2 ≤ · · · .
Suppose m = 4. If r3 ≥ 3, then C ≥ −2 + 1/2 + 1/2 + 2/3 + 2/3 = 1/3. The only
other cases are those with r1 = r2 = r3 = 2, in which case C = 0 for r4 = 2 and
C ≥ 1/6 for r4 ≥ 3.

Suppose m = 3. If r1 ≥ 3, then C = 0 for r3 = 3 and C ≥ 1/12 for r3 ≥ 4.
Otherwise, we have r1 = 2. In this case:

• If r2 = 2 then C < 0.
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• If r2 = 3, then C ≤ 0 for r3 ≤ 6 and C ≥ 1/42 for r3 ≥ 7.

• If r2 = 4, then C = 0 for r3 = 4 and C ≥ 1/20 for r3 ≥ 5.

• If r2 ≥ 5, then C ≥ −2 + 1/2 + 4/5 + 4/5 = 1/10.

(d) Since g ≥ 2, (2g−2)/n > 0. By (b) and (c), we must then have (2g−2)/n ≥ 1/42,
so n ≤ 84(g − 1).

6. (a) The map f has degree 2g − 2 = 2 (by Riemann-Roch) and is ramified at 6
points (by Riemann-Hurwitz). Let g : C → C be an automorphism fixing the
6 ramification points; it must then fix all of P1

k since a nontrivial automorphism
of P1

k can only fix 2 points. If we write C as the curve y2 = P (x) with P a
rational function of degree 6, then g acts fixing x, so g is either the identity or an
involution. In particular, if g is of odd order, it must be the identity.

(b) If the Hurwitz bound were achieved by C, then C would have a group of automor-
phisms of order 84 and hence an automorphism of order 7. But this automorphism
would then act as a nontrivial permutation of 6 ramification points, a contradic-
tion.

7. (a) The partial derivatives of x3y+y3z+z3x in x, y, z are respectively 3x2y+z3, 3y2z+
x3, 3z2x+y3. For these to all vanish, we must have x3 = −3y2z, y3 = −3z2x, z3 =
−3x2y. Multiplying these together gives (xyz)3 = −27(xyz)3, so xyz = 0. But if
any one of x, y, z vanishes then they must all do so: if for instance x = 0, then
y3 = −3z2x and z3 = −3x2y so we must also have y = z = 0. This proves that
the curve is smooth, and its genus must then be

(
4−1
2

)
= 3.

(b) For ζ7 a primitive 7-th root of unity, take

[x : y : z] 7→ [ζ7x : ζ47y : ζ27z].

To get divisibility by 3, we exhibit an automorphism of order 3:

[x : y : z] 7→ [y : z : x].

(c) Let G be the group of automorphisms of C. By (b) and our assumptions, G has
order divisible by 23, 3, and 7, and hence by 168 = 84(g − 1). Hence we must
have equality in the Hurwitz bound.

8. The partial derivatives of yq+1−zxq−zqx in x, y, z are respectively −zq, yq,−xq, which
have no common zero. Hence this curve is smooth, so its genus is

(
q+1−1

2

)
= q(q−1)/2.

Meanwhile, the curve has automorphisms by the additive group Fq via

[x : y : z] 7→ [x+ cz : y : z] (c ∈ Fq)

and by the group of (q + 1)-st roots of unity in k via

[x : y : z] 7→ [x : cy : z] (c ∈ k, cq+1 = 1).
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These together form a group of order q(q + 1), which is not yet enough to get the
contradiction. However, we can do better: for c ∈ F∗q2 , we have automorphisms

[x : y : z] 7→ [cq+1x : cy : z].

Now we get a group of order q(q2 − 1), which is bigger than 84(g − 1)q(q − 1)/2 for q
sufficiently large.
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