Math 203C (Algebraic Geometry), UCSD, spring 2013
 Problem Set 7 (due Wednesday, June 5)

Solve the following problems, and turn in the solutions to four of them, including at most two of $1-3$ and at most one of $7-8$.

Notation for problems 1-3: fix positive integers $n \geq m>0$. Put

$$
\mathbb{A}_{\mathbb{Z}}^{m n}=\operatorname{Spec} \mathbb{Z}\left[x_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right]
$$

and

$$
\mathbb{A}_{\mathbb{Z}}^{\binom{n}{m}}=\operatorname{Spec} \mathbb{Z}\left[x_{J}: J=\left(j_{1}, \ldots, j_{m}\right), 1 \leq j_{1}<\cdots<j_{m} \leq n\right]
$$

For $I=\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, n\}^{m}$, put

$$
x_{I}= \begin{cases}0 & \text { if } i_{1}, \ldots, i_{m} \text { are not all distinct } \\ \operatorname{sgn}(\sigma) x_{J} & \text { if } I=\sigma(J) \text { and } j_{1}<\cdots<j_{m}\end{cases}
$$

Define the map $f: \mathbb{A}_{\mathbb{Z}}^{m n} \rightarrow \mathbb{A}_{\mathbb{Z}}^{\binom{n}{m}}$ by

$$
f^{*}\left(x_{J}\right)=\operatorname{det}\left(x_{i, j_{\ell}}: 1 \leq i, \ell \leq m\right) .
$$

Let V_{J} be the basic open subscheme of $\mathbb{A}_{\mathbb{Z}}^{m n}$ defined by $f^{*}\left(x_{J}\right)$. Let Z_{J} be the closed subscheme of $\mathbb{A}_{\mathbb{Z}}^{m n}\left(\right.$ and $\left.V_{J}\right)$ defined by the relations $\left(x_{i, j_{\ell}}\right)-I_{m}$.

1. Prove that $V_{J} \cong \mathrm{GL}(m) \times_{\text {Spec } \mathbb{Z}} Z_{J}$. Hint: you should be using Yoneda's lemma throughout this problem set, in order to express such questions in terms of points over affine schemes.
2. Define the Plücker relations as follows: for $I, J \in\{1, \ldots, n\}^{m}$ and $s \in\{1, \ldots, m\}$, put

$$
Q_{I, J, s}=x_{I} x_{J}-\sum_{t=1}^{m} x_{\left(i_{1}, \ldots, i_{s-1}, j_{t}, i_{s+1}, \ldots, i_{m}\right)} x_{\left(j_{1}, \ldots, j_{t-1}, i_{s}, j_{t+1}, \ldots, j_{m}\right)}
$$

Prove that f factors through the closed subscheme of $\mathbb{A}_{\mathbb{Z}}^{\binom{n}{m}}$ cut out by the $Q_{I, J, s}$. Hint: first reduce to considering only Z_{J}.
3. Let $G(m, n)$ be the closed subscheme of $\mathbb{P}^{\binom{n}{m}-1}$ cut out by the $Q_{I, J, s}$. By the previous exercise, f induces a map $Z_{J} \rightarrow G(m, n)_{x_{J}}$. Prove that this map is an isomorphism.
4. In this exercise we prove a form of Chow's lemma, which we used in class a while back.
(a) For any morphism $f: Y \rightarrow X$ of schemes with X noetherian, prove that there is a minimal closed subscheme Z of X through which f factors. We call this the closed image of f.
(b) Let S be a noetherian affine scheme. Let $X \rightarrow S$ be a morphism of finite type. Prove that X can be covered by finitely many open subschemes U_{1}, \ldots, U_{n} which are quasiprojective over S. That is, each U_{i} admits an open immersion (over S) into a projective S-scheme P_{i}. Hint: embed affine space into projective space.
(c) Let $X \rightarrow S$ be a proper morphism of schemes with S affine and noetherian. Prove that three exists a morphism $X^{\prime} \rightarrow X$ with $X^{\prime} \rightarrow S$ proper such that for some open dense subscheme U of X, the map $X^{\prime} \times_{X} U \rightarrow U$ is an isomorphism. Hint: reduce to the case of X irreducible. Then put $U=U_{1} \cap \cdots \cap U_{n}$ and let X^{\prime} be the closed image of $U \rightarrow X \times_{S} P_{1} \times_{S} \cdots \times_{S} P_{n}$.
5. Let k be an algebraically closed field of characteristic 0 . Let C be a smooth projective connected curve over k of genus $g \geq 2$. In this exercise, we prove that any finite group G of automorphisms of C has order at most $84(g-1)$ (the Hurwitz bound). This bound is achieved in some cases, e.g., for $g=3$ (see below). It can also be shown that any group of automorphisms of C is finite, but we will not do this here.
(a) Let n be the order of G; then the G-fixed subfield of $K(C)$ is itself the function field of a curve T, and the inclusion of fields corresponds to a morphism $f: C \rightarrow T$ of degree n. Prove that G acts transitively on the preimage of any point of T.
(b) For each closed point $P \in T$, let r_{P} denote the ramification number of the map at some preimage of P (by (a), it does not matter which one is chosen). Prove that

$$
\frac{2 g-2}{n}=2 g(T)-2+\sum_{P}\left(1-\frac{1}{r_{P}}\right) .
$$

Note that the sum is finite because $r_{P}=1$ for all but finitely many P.
(c) Prove there do not exist integers $h \geq 0$ and $r_{1}, \ldots, r_{m} \geq 2$ such that

$$
0<2 h-2+\sum_{i=1}^{m}\left(1-\frac{1}{r_{i}}\right)<\frac{1}{42} .
$$

(d) Deduce that $n \leq 84(g-1)$.
6. Let C be a curve of genus 2 over an algebraically closed field of characteristic $\neq 2$.
(a) Let $f: C \rightarrow \mathbb{P}_{k}^{1}$ be the map defined by the canonical divisor. Prove that any finite group of automorphisms of C of odd order acts faithfully on the ramification points of f.
(b) Prove that the Hurwitz bound is never achieved for $g=2$.
7. Let k be an algebraically closed field of characteristic 0 . Let C be the Klein quartic curve

$$
\operatorname{Proj} k[x, y, z] /\left(x^{3} y+y^{3} z+z^{3} x\right) .
$$

(a) Prove that $g(C)=3$.
(b) Write down explicit automorphisms of C of orders 3 and 7 .
(b) It can be shown that the group of automorphisms of C is finite and contains a subgroup isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3}$. Assuming these facts, prove that C achieves the Hurwitz bound.
8. Let k be an algebraically closed field of characteristic $p>0$. Let q be a power of p. Prove that

$$
\operatorname{Proj} k[x, y, z] /\left(y^{q+1}-z x^{q}-z^{q} x\right)
$$

is a smooth projective curve which violates the Hurwitz bound for q sufficiently large compared to p.

