Math 203C (Algebraic Geometry), UCSD, spring 2013 Problem Set 7 (due Wednesday, June 5)

Solve the following problems, and turn in the solutions to *four* of them, including at most two of 1–3 and at most one of 7–8.

Notation for problems 1–3: fix positive integers $n \ge m > 0$. Put

$$\mathbb{A}_{\mathbb{Z}}^{mn} = \operatorname{Spec} \mathbb{Z}[x_{i,j} : 1 \le i \le m, 1 \le j \le n]$$

and

$$\Delta_{\mathbb{Z}}^{(m)} = \operatorname{Spec} \mathbb{Z}[x_J : J = (j_1, \dots, j_m), 1 \le j_1 < \dots < j_m \le n].$$

For $I = (i_1, ..., i_m) \in \{1, ..., n\}^m$, put

$$x_I = \begin{cases} 0 & \text{if } i_1, \dots, i_m \text{ are not all distinct} \\ \operatorname{sgn}(\sigma) x_J & \text{if } I = \sigma(J) \text{ and } j_1 < \dots < j_m. \end{cases}$$

Define the map $f : \mathbb{A}^{mn}_{\mathbb{Z}} \to \mathbb{A}^{\binom{n}{m}}_{\mathbb{Z}}$ by

$$f^*(x_J) = \det(x_{i,j_\ell} : 1 \le i, \ell \le m)$$

Let V_J be the basic open subscheme of $\mathbb{A}_{\mathbb{Z}}^{mn}$ defined by $f^*(x_J)$. Let Z_J be the closed subscheme of $\mathbb{A}_{\mathbb{Z}}^{mn}$ (and V_J) defined by the relations $(x_{i,j_\ell}) - I_m$.

- 1. Prove that $V_J \cong \operatorname{GL}(m) \times_{\operatorname{Spec} \mathbb{Z}} Z_J$. Hint: you should be using Yoneda's lemma throughout this problem set, in order to express such questions in terms of points over affine schemes.
- 2. Define the *Plücker relations* as follows: for $I, J \in \{1, \ldots, n\}^m$ and $s \in \{1, \ldots, m\}$, put

$$Q_{I,J,s} = x_I x_J - \sum_{t=1}^m x_{(i_1,\dots,i_{s-1},j_t,i_{s+1},\dots,i_m)} x_{(j_1,\dots,j_{t-1},i_s,j_{t+1},\dots,j_m)}$$

Prove that f factors through the closed subscheme of $\mathbb{A}_{\mathbb{Z}}^{\binom{n}{m}}$ cut out by the $Q_{I,J,s}$. Hint: first reduce to considering only Z_J .

- 3. Let G(m, n) be the closed subscheme of $\mathbb{P}^{\binom{n}{m}-1}$ cut out by the $Q_{I,J,s}$. By the previous exercise, f induces a map $Z_J \to G(m, n)_{x_J}$. Prove that this map is an isomorphism.
- 4. In this exercise we prove a form of *Chow's lemma*, which we used in class a while back.
 - (a) For any morphism $f: Y \to X$ of schemes with X noetherian, prove that there is a minimal closed subscheme Z of X through which f factors. We call this the closed image of f.

- (b) Let S be a noetherian affine scheme. Let $X \to S$ be a morphism of finite type. Prove that X can be covered by finitely many open subschemes U_1, \ldots, U_n which are *quasiprojective* over S. That is, each U_i admits an open immersion (over S) into a projective S-scheme P_i . Hint: embed affine space into projective space.
- (c) Let $X \to S$ be a proper morphism of schemes with S affine and noetherian. Prove that three exists a morphism $X' \to X$ with $X' \to S$ proper such that for some open dense subscheme U of X, the map $X' \times_X U \to U$ is an isomorphism. Hint: reduce to the case of X irreducible. Then put $U = U_1 \cap \cdots \cap U_n$ and let X' be the closed image of $U \to X \times_S P_1 \times_S \cdots \times_S P_n$.
- 5. Let k be an algebraically closed field of characteristic 0. Let C be a smooth projective connected curve over k of genus $g \ge 2$. In this exercise, we prove that any finite group G of automorphisms of C has order at most 84(g-1) (the Hurwitz bound). This bound is achieved in some cases, e.g., for g = 3 (see below). It can also be shown that any group of automorphisms of C is finite, but we will not do this here.
 - (a) Let n be the order of G; then the G-fixed subfield of K(C) is itself the function field of a curve T, and the inclusion of fields corresponds to a morphism $f: C \to T$ of degree n. Prove that G acts transitively on the preimage of any point of T.
 - (b) For each closed point $P \in T$, let r_P denote the ramification number of the map at some preimage of P (by (a), it does not matter which one is chosen). Prove that

$$\frac{2g-2}{n} = 2g(T) - 2 + \sum_{P} \left(1 - \frac{1}{r_P}\right).$$

Note that the sum is finite because $r_P = 1$ for all but finitely many P.

(c) Prove there do not exist integers $h \ge 0$ and $r_1, \ldots, r_m \ge 2$ such that

$$0 < 2h - 2 + \sum_{i=1}^{m} \left(1 - \frac{1}{r_i}\right) < \frac{1}{42}$$

- (d) Deduce that $n \leq 84(g-1)$.
- 6. Let C be a curve of genus 2 over an algebraically closed field of characteristic $\neq 2$.
 - (a) Let $f: C \to \mathbb{P}^1_k$ be the map defined by the canonical divisor. Prove that any finite group of automorphisms of C of odd order acts faithfully on the ramification points of f.
 - (b) Prove that the Hurwitz bound is *never* achieved for g = 2.
- 7. Let k be an algebraically closed field of characteristic 0. Let C be the *Klein quartic* curve

$$\operatorname{Proj} k[x, y, z]/(x^{3}y + y^{3}z + z^{3}x).$$

- (a) Prove that g(C) = 3.
- (b) Write down explicit automorphisms of C of orders 3 and 7.
- (b) It can be shown that the group of automorphisms of C is finite and contains a subgroup isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$. Assuming these facts, prove that C achieves the Hurwitz bound.
- 8. Let k be an algebraically closed field of characteristic p > 0. Let q be a power of p. Prove that

$$\operatorname{Proj} k[x, y, z] / (y^{q+1} - zx^q - z^q x)$$

is a smooth projective curve which violates the Hurwitz bound for q sufficiently large compared to p.