Math 203C (Algebraic Geometry), UCSD, spring 2016 Problem Set 4 (due Wednesday, May 25 by 5pm)

Solve the following problems, and turn in the solutions to four of them.

1. Let R be a noetherian ring and let M be a finitely generated R-module. We say M has projective dimension m if m is the smallest nonnegative integer for which there exists a projective resolution

$$
\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of R-modules in which the P_{i} are finite projective and $P_{i}=0$ for all $i>m$. Prove that the following conditions are equivalent.
(i) The R-module M has projective dimension $\leq m$.
(ii) We have $\operatorname{Ext}_{R}^{m+1}(M, N)=0$ for all R-modules M.
(iii) We have $\operatorname{Ext}_{R}^{i}(M, N)=0$ for all R-modules N and all $i \geq m+1$.
(iv) For any projective resolution of M as above,

$$
0 \rightarrow \operatorname{coker}\left(P_{m+1} \rightarrow P_{m}\right) \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is also a projective resolution of M.
Here by $\operatorname{Ext}_{R}^{i}(M, N)$, I mean the right derived functors of the contravariant functor $\operatorname{Hom}_{R}(\bullet, N)$. (They happens to coincide with the right derived functors of the covariant functor $\operatorname{Hom}_{R}(M, \bullet)$ but you shouldn't need to use this.)
2. Let $R=\mathbb{C}\left[x^{2}, x^{3}\right] \subset \mathbb{C}[x]$. Give an example of a finitely generated R-module which does not admit a finite projective resolution.
3. Using Chow's lemma, prove that both parts of the GAGA theorem hold for proper varieties over \mathbb{C}.
4. (a) Prove, or give a reference for, the following statement: for R an integral domain, the integral closure of R in $\operatorname{Frac}(R)$ equals the intersection of the valuation rings of $\operatorname{Frac}(R)$ containing R.
(b) Use this to deduce that for any strongly rational convex polyhedral cone σ, the scheme $U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is normal. (See notes from Wednesday, May 11.)
(c) Give an example of a cone σ for which $U_{\sigma} \cong \operatorname{Spec} \mathbb{C}[x, y, z, w] /(x y-z w)$ (thus recovering an example from a previous homework).
5. Using toric varieties, exhibit a blowup of $\mathbb{P}_{\mathbb{C}}^{2}$ and a blowup of $\mathbb{P}_{\mathbb{C}}^{1} \times_{\mathbb{C}} \mathbb{P}_{\mathbb{C}}^{1}$ which are isomorphic to each other.
6. Show that every 2 -dimensional toric variety over \mathbb{C} admits a blowup which is smooth over \mathbb{C}.

