Math 203B (Number Theory), UCSD, winter 2015 Notes on completions of fields

Here is a more detailed version of the discussion about completions of fields from the first lecture.

Let F be a field. An *absolutQe value* on F is a function $|\bullet| : F \to [0, +\infty)$ with the following properties.

- (a) For $x \in F$, |x| = 0 if and only if x = 0.
- (b) For $x, y \in F$, |xy| = |x||y|.
- (c) For $x, y \in F$, $|x + y| \le |x| + |y|$. If in fact we have $|x + y| \le \max\{|x|, |y|\}$, we say that $|\bullet|$ is a *nonarchimedean* absolute value.

From now on, assume that F comes equipped with a specified absolute value $|\bullet|$. As usual, we say that a sequence x_1, x_2, \ldots in F is *Cauchy* if for every $\epsilon > 0$, there exists $N \ge 0$ such that for all integers $m, n \ge N$, we have $|x_m - x_n| < \epsilon$. We record the following observations.

- Any constant sequence is Cauchy.
- Any convergent sequence, and in particular any null sequence (sequence convergent to 0) is Cauchy.
- Any permutation of a Cauchy sequence is Cauchy.
- Any Cauchy sequence is bounded.
- The termwise sum of two Cauchy sequences is Cauchy (by the triangle inequality).
- The termwise product of two Cauchy sequences is Cauchy: if $(x_1, x_2, ...)$ and $(y_1, y_2, ...)$ are the two sequences, we see that $(x_1y_1, x_2y_2, ...)$ is Cauchy by writing

$$x_m y_m - x_n y_n = x_m (y_m - y_n) + y_n (x_m - x_n)$$

and using the fact that $|x_m|, |y_n|$ are uniformly bounded. Consequently, the set of Cauchy sequences forms a ring R. By similar reasoning, the termwise product of a bounded sequence and a null sequence is null, so the null sequences form an ideal I in R.

We define the completion \widehat{F} of F, as a ring, as the quotient R/I. Note that the cosets of I in R can be identified with the equivalence classes for the relation \sim defined in class: $(x_1, x_2, \ldots) \sim (y_1, y_2, \ldots)$ if the sequence $(x_1, y_1, x_2, y_2, \ldots)$ is also Cauchy.

We claim that \widehat{F} is not just a ring but a field. To see this, let $(x_1, x_2, ...)$ be any sequence which is not null. By definition, that means that for some $\epsilon > 0$, there are infinitely many indices n for which $|x_n| > \epsilon$. On the other hand, for some $N \ge 0$, for all $m, n \ge N$, we have $|x_m - x_n| < \epsilon/2$. Consequently, we must have $|x_m| > \epsilon/2$ for all $m \ge N$, so none of these x_m is zero. Let $(y_1, y_2, ...)$ be any sequence with $y_n = 1/x_n$ for $n \ge N$ (and arbitrary values for n < N). For any $\delta > 0$, we can choose $N' \ge N$ such that for $m, n \ge N$, we have $|x_m - x_n| < \delta \epsilon^2/4$; then

$$|y_m - y_n| = \left|\frac{x_n - x_m}{x_m x_n}\right| < \frac{4}{\epsilon^2}|x_n - x_m| < \delta,$$

so $(y_1, y_2, ...)$ is a Cauchy sequence whose image in \widehat{F} is a multiplicative inverse of $(x_1, x_2, ...)$.

We define the function $|\bullet|$ on R by taking $|(x_1, x_2, ...)| = \lim_{n\to\infty} |x_n|$ (which exists by the triangle inequality). One checks easily that this function factors through \widehat{F} and defines an absolute value, and that the map $F \to \widehat{F}$ taking x to (x, x, ...) is isometric. Moreover, \widehat{F} is complete: if $\underline{x}_1 = (x_{11}, x_{12}, ...), \underline{x}_2 = (x_{21}, x_{22}, ...), ...$ is a sequence in R representing a Cauchy sequence in \widehat{F} , we can construct a limit of this sequence by diagonalization. (More precisely, for each i, choose a positive integer N_i such that $|x_{im} - x_{in}| \leq 2^{-i}$ for $m, n \geq N_i$; then one checks that $(x_{1N_1}, x_{2N_2}, ...)$ belongs to R and represents a limit of the original sequence.)

Now suppose I have constructed some other field G which I would like to show is isomorphic to \widehat{F} . It would suffice to produce the following data.

- 1. An absolute value $|\bullet|$ on G under which it is complete.
- 2. A homomorphism $F \to G$ of fields (necessarily injective!) which is isometric and whose image is dense.

Namely, given this data, any Cauchy sequence in F maps to a Cauchy sequence in G, which has a limit; we thus get a well-defined homomorphism $\widehat{F} \to G$. This is injective because it's a homomorphism of fields; it's surjective because F is dense in G, so we can represent any element of G as a limit of a Cauchy sequence in F.